959 resultados para population biology
Resumo:
Tese dout., Ciências e Tecnologias das Pescas, Universidade do Algarve, 2007
Resumo:
Crustaceans comprising numerous edible species of prawns, lobsters and crabs inhabiting different ecosystem form significant portion of the aquatic food resources of the world. Among the crustaceans, prawns are the most commercially exploited group and hold premier rank by virtue of their importance as an esteemed food of gourmet and on account of their high export value. Met-ape-naeus manoceras (Fabricius, 1798) which is known IS,Speckled shrimp’ (FAD name) and ‘Brown shrimp’ ( common nameused in the industry) is one of the commercially important marine penaeid prawns of India. During 1995, M. monaceros catch constituted 7.5 Z of the all India marine penaeid prawn landings. M. monoceros attains a maximum length of about 200 mm and has high export potential.Thus realising the growing importance of M. monoceros in the capture fisheries, it was felt, that it would be ideal to carry out detailed study on this species for rational exploitation and management of its fishery. Hence, the present work entitled, “Biology, population characteristics and fishery of the speckled shrimp Hetapenaeus monoceros (Fabricius, 1798) along Kerala coast“ was undertaken by the author. The thesis is laid out in seven chapters comprising TAXONOMY, FOOD AND FEEDING HABITS, AGE AND GROWTH, REPRODUCTION,LENGTH-WEIGHT RELATIONSHIP, FISHERY and POPULATION DYNAMICS
Resumo:
The present study is the first attempt to understand population characteristics of the deep-sea pandalid shrimp, P. quasigrandis and to assess the status of these resources off Kerala coast.Total mortality coefficient (Z) of P. quasigrandis estimated by various methods.Natural mortality coefficient (M) calculated was 0.65 and 1.02 by Pauly‟sempirical formula and Srinaths‟s formula respectively The deep-sea shrimp P. quasigrandis exploited from the present fishing ground and their monetary return has started showing a declining trend. By observing the current yield and economic return, there is no further scope for increasing the catch from the present fishing ground. The study indicated that majority of the deep-sea shrimp trawlers, especially targeted for pandalid shrimps still concentrated off Kollam area (Quilon Bank). Even though researchers had located several potential deep-sea fishing grounds based on exploratory surveys in Indian EEZ , fishermen are unaware of these fishing grounds located and hence sharing the information about new potential deep-sea fishing grounds could avert the possible stock decline due to the intensive targeted deep-sea shrimp fishery in the Quilon Bank. Hence, the present study recommended that part of the effort from existing fishing grounds may be shifted to newly located deep-sea fishing grounds which will help in a sustainableexploitation of deep-sea resources off Kerala coast.
Resumo:
Available information on abundance of myctophids and their utilisation indicate that there is excellent scope for development of myctophid fisheries in Indian Ocean. Most of the conventional fish stocks have reached a state of full exploitation or over-exploitation. Hence there is need to locate new and conventional fishery resources in order to fill in the supply-demand gap, in the face of increasing demand for fish. Information on length-weight relationship, age and growth, spawning season, fecundity and age at maturity and information on bycatch discards are required for sustainable utilization of myctophid resource in the Indian Ocean
Resumo:
Observations on clumps of Phascum cuspidatum during the summer and autumn indicated that this species is at least a short-lived perennial, as young shoots develop from old, brown shoots persisting from the previous winter. No young shoots arising by vegetative propagation were recorded in Pottia truncata. Rhizoid tubers were observed in this species, but only in one of the many clumps examined. Spores of both species germinated freely in culture, but when spores were planted in the field young gametophytes developed inconsistently in P. truncata and never in P. cuspidatum. An investigation of spore deposition around an isolated clump of P. truncata suggested that 67% of the spores released were deposited within the clump, and 70% within 2m. Electrophoretic studies indicated limited genetic variation within two populations of each species, with no genotypes in common between the populations. No genetic variation was recorded between gametophytes within individual clumps of either species, nor between sporophytes and their maternal gametophytes, suggesting a high incidence of inbreeding in these monoecious mosses. (author abst.)
Resumo:
Population and reproductive biology were studied in three populations of the crab Uca burgersi Holthuis, 1967, in the Indaia, Cavalo and Ubatumirim mangrove forests (Ubatuba, São Paulo State, Brazil). Crabs were collected during low tide (August 2001 through July 2002), by digging the sediment, with a standard capture effort (two persons for 30 min.). Carapace width was measured, and gonad developmental stage was recorded from all specimens. U. burgersi was most abundant in the Cavalo mangrove, where the largest mate was found. Juvenile crabs were found year-round at all three sites. However, the ratio of ovigerous females was very low, even null in the Cavalo mangrove. The gonad development rate indicated that U. burgersi was reproducing continuously, but more intensively during spring and summer, with recruitment occurring in winter. The synchrony between the populational and reproductive biology in the three areas showed that local features were not the limiting factors. It is suggested that this species is a habitat generalist.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The `Critically Endangered` Cone-billed Tanager Conothraupis mesoleuca was described in 71 93 9, based on a single specimen collected in the state of Mato Grosso, western Brazil. Not seen again in the wild until 2003, this poorly-known species was rediscovered in Emas National Park, in the Brazilian state of Goias. We describe here the discovery of a new population of Cone-billed Tanager in Chapada dos Parecis, along the upper Juruena River basin, in the state of Mato Grosso. The birds were always detected in (or near) flooded habitats along rivers. At least 40 individuals were found, but the population may be larger since areas of potential habitat are available in the upper Juruena basin and these have not yet been surveyed. We also provide here the first information on the biology and behaviour of the species based on observations in Juruena and Emas, as well as a first description of the female. Historical documents and our records support our suggestion that ""Juruena"", i.e. the type locality of the Cone-billed Tanager, refers to the Juruena telegraph station (12 degrees 50`S, 58 degrees 55`W). Considering that the range of the species is being settled, research on different aspects of its biology are urgent.
Resumo:
The potential restriction to effective dispersal and gene flow caused by habitat fragmentation can apply to multiple levels of evolutionary scale; from the fragmentation of ancient supercontinents driving diversification and speciation on disjunct landmasses, to the isolation of proximate populations as a result of their inability to cross intervening unsuitable habitat. Investigating the role of habitat fragmentation in driving diversity within and among taxa can thus include inferences of phylogenetic relationships among taxa, assessments of intraspecific phylogeographic structure and analyses of gene flow among neighbouring populations. The proposed Gondwanan clade within the chironomid (non-biting midge) subfamily Orthocladiinae (Diptera: Chironomidae) represents a model system for investigating the role that population fragmentation and isolation has played at different evolutionary scales. A pilot study by Krosch et al (2009) indentified several highly divergent lineages restricted to ancient rainforest refugia and limited gene flow among proximate sites within a refuge for one member of this clade, Echinocladius martini Cranston. This study provided a framework for investigating the evolutionary history of this taxon and its relatives more thoroughly. Populations of E. martini were sampled in the Paluma bioregion of northeast Queensland to investigate patterns of fine-scale within- and among-stream dispersal and gene flow within a refuge more rigorously. Data was incorporated from Krosch et al (2009) and additional sites were sampled up- and downstream of the original sites. Analyses of genetic structure revealed strong natal site fidelity and high genetic structure among geographically proximate streams. Little evidence was found for regular headwater exchange among upstream sites, but there was distinct evidence for rare adult flight among sites on separate stream reaches. Overall, however, the distribution of shared haplotypes implied that both larval and adult dispersal was largely limited to the natal stream channel. Patterns of regional phylogeographic structure were examined in two related austral orthoclad taxa – Naonella forsythi Boothroyd from New Zealand and Ferringtonia patagonica Sæther and Andersen from southern South America – to provide a comparison with patterns revealed in their close relative E. martini. Both taxa inhabit tectonically active areas of the southern hemisphere that have also experienced several glaciation events throughout the Plio-Pleistocene that are thought to have affected population structure dramatically in many taxa. Four highly divergent lineages estimated to have diverged since the late Miocene were revealed in each taxon, mirroring patterns in E. martini; however, there was no evidence for local geographical endemism, implying substantial range expansion post-diversification. The differences in pattern evident among the three related taxa were suggested to have been influenced by variation in the responses of closed forest habitat to climatic fluctuations during interglacial periods across the three landmasses. Phylogeographic structure in E. martini was resolved at a continental scale by expanding upon the sampling design of Krosch et al (2009) to encompass populations in southeast Queensland, New South Wales and Victoria. Patterns of phylogeographic structure were consistent with expectations and several previously unrecognised lineages were revealed from central- and southern Australia that were geographically endemic to closed forest refugia. Estimated divergence times were congruent with the timing of Plio-Pleistocene rainforest contractions across the east coast of Australia. This suggested that dispersal and gene flow of E. martini among isolated refugia was highly restricted and that this taxon was susceptible to the impacts of habitat change. Broader phylogenetic relationships among taxa considered to be members of this Gondwanan orthoclad group were resolved in order to test expected patterns of evolutionary affinities across the austral continents. The inferred phylogeny and estimated divergence times did not accord with expected patterns based on the geological sequence of break-up of the Gondwanan supercontinent and implied instead several transoceanic dispersal events post-vicariance. Difficulties in appropriate taxonomic sampling and accurate calibration of molecular phylogenies notwithstanding, the sampling regime implemented in the current study has been the most intensive yet performed for austral members of the Orthocladiinae and unsurprisingly has revealed both novel taxa and phylogenetic relationships within and among described genera. Several novel associations between life stages are made here for both described and previously unknown taxa. Investigating evolutionary relationships within and among members of this clade of proposed Gondwanan orthoclad taxa has demonstrated that a complex interaction between historical population fragmentation and dispersal at several levels of evolutionary scale has been important in driving diversification in this group. While interruptions to migration, colonisation and gene flow driven by population fragmentation have clearly contributed to the development and maintenance of much of the diversity present in this group, long-distance dispersal has also played a role in influencing diversification of continental biotas and facilitating gene flow among disjunct populations.
Resumo:
1. A diverse array of patterns has been reported regarding the spatial extent of population genetic structure and effective dispersal in freshwater macroinvertebrates. In river systems, the movements of many taxa can be restricted to varying degrees by the natural stream channel hierarchy. 2. In this study, we sampled populations of the non-biting freshwater midge Echinocladius martini in the Paluma bioregion of tropical northeast Queensland to investigate fine scale patterns of within- and among-stream dispersal and gene flow within a purported historical refuge. We amplified a 639 bp fragment of mitochondrial COI and analysed genetic structure using pairwise ΦST, hierarchical AMOVA, Mantel tests and a parsimony network. Genetic variation was partitioned among stream sections using Streamtree to investigate the effect of potential instream dispersal barriers. 3. The data revealed strong natal site fidelity and significant differentiation among neighbouring, geographically proximate streams. We found evidence for only episodic adult flight among sites on separate stream reaches. Overall, however, our data suggested that both larval and adult dispersal was largely limited to within a stream channel. 4. This may arise from a combination of the high density of riparian vegetation physically restricting dispersal and from the joint effects of habitat stability and large population sizes. Together these may mitigate the requirement for movement among streams to avoid inbreeding and local extinction due to habitat change and may thus enable persistence of upstream populations in the absence of regular compensatory upstream flight. Taken together, these data suggest that dispersal of E. martini is highly restricted, to the scale of only a few kilometres, and hence occurs predominantly within the natal stream.
Resumo:
Activated protein C resistance (APCR), the most common risk factor for venous thrombosis, is the result of a G to A base substitution at nucleotide 1691 (R506Q) in the factor V gene. Current techniques to detect the factor V Leiden mutation, such as determination of restriction length polymorphisms, do not have the capacity to screen large numbers of samples in a rapid, cost- effective test. The aim of this study was to apply the first nucleotide change (FNC) technology, to the detection of the factor V Leiden mutation. After preliminary amplification of genomic DNA by polymerase chain reaction (PCR), an allele-specific primer was hybridised to the PCR product and extended using fluorescent terminating dideoxynucleotides which were detected by colorimetric assay. Using this ELISA-based assay, the prevalence of the factor V Leiden mutation was determined in an Australian blood donor population (n = 500). A total of 18 heterozygotes were identified (3.6%) and all of these were confirmed with conventional MnlI restriction digest. No homozygotes for the variant allele were detected. We conclude from this study that the frequency of 3.6% is compatible with others published for Caucasian populations. In addition, the FNC technology shows promise as the basis for a rapid, automated DNA based test for factor V Leiden.