920 resultados para polarization beam splitter
Resumo:
This paper reports on the design and development of a dividing/phasing network for a compact switched-beam array antenna for Land-vehicle mobile satellite communications, The device is formed by a switched radial divider/combiner and 1-bit phase shifters and generates a sufficient number of beams for the proper satellite tracking.
Resumo:
In this study, we examined the contribution of microtubules to epithelial morphogenesis in primary thyroid cell cultures. Thyroid follicles consist of a single layer of polarized epithelial cells surrounding a closed compartment, the follicular lumen. Freshly isolated porcine thyroid cells aggregate and reorganize to form follicles when grown in primary cultures. Follicular reorganization is principally a morphogenetic process that entails the assembly of biochemically distinct apical and basolateral membrane domains, delimited by tight junctions. The establishment of cell surface polarity during folliculogenesis coincided with the polarized redistribution of microtubules, predominantly in the developing apical poles of cells. Disruption of microtubule integrity using either colchicine or nocodazole caused loss of defined apical membrane domains, tight junctions and follicular lumina. Apical membrane and tight junction markers became randomly distributed at the outer surfaces of aggregates. In contrast, the basolateral surface markers, E-cadherin and Na+,K+-ATPase, remained correctly localized at sites of cell-cell contact and at the free surfaces of cell aggregates. These findings demonstrate that microtubules play a necessary role in thyroid epithelial morphogenesis. Specifically, microtubules are essential to preserve the correct localization of apical membrane components within enclosed cellular aggregates, a situation that is also likely to pertain where lumina must be formed from solid aggregates of epithelial precursors. (C) 2001 Wiley-Liss, Inc.
Resumo:
This paper presents a review of the time-domain polarization measurement techniques for the condition assessment of aged transformer insulation. The polarization process is first described with appropriate dielectric response theories and then commonly used polarization methods are described with special emphasis on the most widely used return voltage(rv) measurement. Most recent emphasis has been directed to techniques of determining moisture content of insulation indirectly by measuring rv parameters. The major difficulty still lies with the accurate interpretation of return voltage results. This paper investigates different thoughts regarding the interpretation of rv results for different moisture and ageing conditions. Other time domain polarization measurement techniques and their results are also presented in this paper.
Resumo:
We generate and characterize continuous variable polarization entanglement between two optical beams. We first produce quadrature entanglement, and by performing local operations we transform it into a polarization basis. We extend two entanglement criteria, the inseparability criteria proposed by Duan et al (2000 Phys. Rev. Lett. 84 2722) and the Einstein–Podolsky–Rosen (EPR) paradox criteria proposed by Reid and Drummond (1988 Phys. Rev. Lett. 60 2731), to Stokes operators; and use them to characterize the entanglement. Our results for the EPR paradox criteria are visualized in terms of uncertainty balls on the Poincaré sphere. We demonstrate theoretically that using two quadrature entangled pairs it is possible to entangle three orthogonal Stokes operators between a pair of beams, although with a bound √3 times more stringent than for the quadrature entanglement.
Resumo:
We investigate coherent electron transport through a parallel circuit of two quantum dots (QDs), each of which has a single tunable. energy level. Electrons tunnelling via each dot from the left lead interfere with each other at the right lead. It is shown that due to the quantum interference of tunnelling electrons the double QD device is magnetically polarized by coherent circulation of electrons on the closed path through the dots and the leads. By varying the energy level of each dot one can make the magnetic states of the device be up-, non- or down-polarized. It is shown that for experimentally accessible temperatures and applied biases the magnetic polarization currents Should be sufficiently large to observe with current nanotechnology.
Resumo:
The effect of electron beam radiation on a perfluoroalkoxy (PFA) resin was examined using solid-state high-speed magic angle spinning F-19 NMR spectroscopy and FT-IR spectroscopy. Samples were prepared for analysis by subjecting them to electron beam radiation in the dose range 0.5-2.0 MGy at 633 K, which is above the crystalline melting temperature. The new structures were identified and include new saturated chain ends, short and long branches, unsaturated groups, and cross-links. The radiation chemical yield (G value) of new long branch points was greater than the G value of new chain ends, suggesting that cross-linking is the net radiolytic process. This conclusion was supported by an observed decrease in the crystallinity and an increase in the optical clarity of the polymer.
Resumo:
Here, we use Andreev reflection spectroscopy to study the spin polarization of high quality CrO2 films. We study the spin polarization as a function of growth temperature, resulting in grain size and electrical resistivity. In these films low temperature growth appears to be a necessary but not sufficient condition to guarantee the observation of high spin polarization, and this is only observed in conjunction with suppressed superconducting gap values and anomalously low interface properties. We suggest that this combination of observations is a manifestation of the long range spin triplet proximity effect. (C) 2007 American Institute of Physics.
Resumo:
n this paper we make an exhaustive study of the fourth order linear operator u((4)) + M u coupled with the clamped beam conditions u(0) = u(1) = u'(0) = u'(1) = 0. We obtain the exact values on the real parameter M for which this operator satisfies an anti-maximum principle. Such a property is equivalent to the fact that the related Green's function is nonnegative in [0, 1] x [0, 1]. When M < 0 we obtain the best estimate by means of the spectral theory and for M > 0 we attain the optimal value by studying the oscillation properties of the solutions of the homogeneous equation u((4)) + M u = 0. By using the method of lower and upper solutions we deduce the existence of solutions for nonlinear problems coupled with this boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Mestrado em Radioterapia.
Resumo:
Industrial rotating machines may be exposed to severe dynamic excitations due to resonant working regimes. Dealing with the bending vibration, problem of a machine rotor, the shaft - and attached discs - can be simply modelled using the Bernoulli-Euler beam theory, as a continuous beam subjected to a specific set of boundary conditions. In this study, the authors recall Rayleigh's method to propose an iterative strategy, which allows for the determination of natural frequencies and mode shapes of continuous beams taking into account the effect of attached concentrated masses and rotational inertias, including different stiffness coefficients at the right and the left end sides. The algorithm starts with the exact solutions from Bernoulli-Euler's beam theory, which are then updated through Rayleigh's quotient parameters. Several loading cases are examined in comparison with the experimental data and examples are presented to illustrate the validity of the model and the accuracy of the obtained values.
Resumo:
Mestrado em Radioterapia
Resumo:
Purpose: The most recent Varian® micro multileaf collimator(MLC), the High Definition (HD120) MLC, was modeled using the BEAMNRCMonte Carlo code. This model was incorporated into a Varian medical linear accelerator, for a 6 MV beam, in static and dynamic mode. The model was validated by comparing simulated profiles with measurements. Methods: The Varian® Trilogy® (2300C/D) accelerator model was accurately implemented using the state-of-the-art Monte Carlo simulation program BEAMNRC and validated against off-axis and depth dose profiles measured using ionization chambers, by adjusting the energy and the full width at half maximum (FWHM) of the initial electron beam. The HD120 MLC was modeled by developing a new BEAMNRC component module (CM), designated HDMLC, adapting the available DYNVMLC CM and incorporating the specific characteristics of this new micro MLC. The leaf dimensions were provided by the manufacturer. The geometry was visualized by tracing particles through the CM and recording their position when a leaf boundary is crossed. The leaf material density and abutting air gap between leaves were adjusted in order to obtain a good agreement between the simulated leakage profiles and EBT2 film measurements performed in a solid water phantom. To validate the HDMLC implementation, additional MLC static patterns were also simulated and compared to additional measurements. Furthermore, the ability to simulate dynamic MLC fields was implemented in the HDMLC CM. The simulation results of these fields were compared with EBT2 film measurements performed in a solid water phantom. Results: Overall, the discrepancies, with and without MLC, between the opened field simulations and the measurements using ionization chambers in a water phantom, for the off-axis profiles are below 2% and in depth-dose profiles are below 2% after the maximum dose depth and below 4% in the build-up region. On the conditions of these simulations, this tungsten-based MLC has a density of 18.7 g cm− 3 and an overall leakage of about 1.1 ± 0.03%. The discrepancies between the film measured and simulated closed and blocked fields are below 2% and 8%, respectively. Other measurements were performed for alternated leaf patterns and the agreement is satisfactory (to within 4%). The dynamic mode for this MLC was implemented and the discrepancies between film measurements and simulations are within 4%. Conclusions: The Varian® Trilogy® (2300 C/D) linear accelerator including the HD120 MLC was successfully modeled and simulated using the Monte CarloBEAMNRC code by developing an independent CM, the HDMLC CM, either in static and dynamic modes.
Resumo:
Following work on tantalum and chromium implanted flat M50 steel substrates, this work reports on the electrochemical behaviour of M50 steel implanted with tantalum and chromium and the effect of the angle of incidence. Proposed optimum doses for resistance to chloride attack were based on the interpretation of results obtained during long-term and accelerated electrochemical testing. After dose optimization from the corrosion viewpoint, substrates were implanted at different angles of incidence (15°, 30°, 45°, 60°, 75°, 90°) and their susceptibility to localized corrosion assessed using open-circuit measurements, step by step polarization and cyclic voltammetry at several scan rates (5–50 mV s-1). Results showed, for tantalum implanted samples, an ennoblement of the pitting potential of approximately 0.5 V for an angle of incidence of 90°. A retained dose of 5 × 1016 atoms cm-2 was found by depth profiling with Rutherford backscattering spectrometry. The retained dose decreases rapidly with angle of incidence. The breakdown potential varies roughly linearly with the angle of incidence up to 30° falling fast to reach -0.1 V (vs. a saturated calomel electrode (SCE)) for 15°. Chromium was found to behave differently. Maximum corrosion resistance was found for angles of 45°–60° according to current densities and breakdown potentials. Cr+ depth profiles ((p,γ) resonance broadening method), showed that retained doses up to an angle of 60° did not change much from the implanted dose at 90°, 2 × 1017 Cr atoms cm-2. The retained implantation dose for tantalum and chromium was found to follow a (cos θ)8/3 dependence where θ is the angle between the sample normal and the beam direction.
Resumo:
To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization-sensitive laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135 degrees and ex situ transmission electronic microscopy analysis demonstrate the existence of nonspherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low-frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian free molecule coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian free molecule coagulation model including a log-normal particle size distribution. (C) 1996 American Institute of Physics.