974 resultados para playing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The essays in this volume provide an international perspective on persistent and emerging questions related to the use of online technologies for teaching and learning. They demonstrate that online literacy practices can be understood only when they are examined within their social, political, economic, cultural, and historical contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The author looks at the effects of replaying a sequence of sounds or musical notes in reverse temporal order. He presents some programming ideas which illustrate how to use MicroWorlds and Logo programming to play a tune forwards, backwards and even upside down.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four scholars and about fifteen other participants gathered at Monash University on 7 June 2007 to discuss Henk Maier's 'We are playing relatives: a survey of Malay writing' (KITLV Press, Leiden, 2004).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared with previous generations, children spend less time playing outdoors and have lower participation rates in active transport. Many studies have identified lack of neighbourhood safety as a potential barrier to children's physical activity. This review describes concerns regarding ‘stranger danger’ and road safety, and discusses empirical studies that examine associations between neighbourhood safety and physical activity among youth. Variability of perceptions of safety between parents and youth are examined; ‘social traps’ are identified; and physical/social environmental interventions aimed at improving neighbourhood safety are discussed. A research agenda is suggested for further study of perceived and objective measures of neighbourhood safety and their associations with children's physical activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The purpose of the study was to compare the exercise-induced changes in bone mass and geometry between boys and girls.

Methods: Eighty competitive tennis players (43 boys, 37 girls) aged 7–19 years participated. Pubertal status was self-assessed using Tanner stages (TS 1–5). The dominant and nondominant humeri were compared for DXA-derived bone mass (BMC) and MRI-derived bone geometry [total bone area (TA), medullary area (MA) and cortical bone area (CA)].

Results/Discussion: Exercise-induced side-to-side differences in BMC, TA and CA were significant from TS1 to 5 in boys and girls (p < 0.06). Pre-pubertal (TS1) girls and boys show similar side-to-side difference in BMC after adjustment for training volume (19% vs. 15%, ns). Similar findings were found forTA and CA. In contrast, during puberty (TS2-4) boys displayed greater side-to-side differences than girls for BMC (27% vs. 18%, p < 0.05), TA (13–15% vs. 8%, p < 0.05) and CA (32% vs. 20%, p < 0.01), even after adjustment for tennis history. Girls partly compensated for the lack of an exercise-induced increase in bone size by a reduction of the medullary cavity on the dominant side (−5.5 to −13%, p < 0.05). In post-puberty (TS 5 or postmenarche), the size of the medullary cavity remained smaller on the dominant side in girls (−5% to −9%, p = 0.1–0.05??) whereas no such reduction was observed in boys.

Conclusion: Regular exercise initiated before puberty and maintained throughout puberty leads to greater skeletal benefits in peri-pubertal boys than girls for bone mass and bone size, two of the major determinants of bone strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing physical activity amongst seniors is important for public health, yet guidance is needed to minimise injury risks. To describe the incidence of falls/injuries in a walking team ball game (Lifeball) designed for seniors, a prospective cohort study was undertaken amongst community dwelling Lifeball participants in Australia. Players completed a telephone survey soon after commencing Lifeball (2004) and 12 months later (2005). Attendance and incident records were audited for the period. Subjects joined a Lifeball group with opportunity to play at least once per week. Baseline was completed by 284 players aged between 40 and 96 years (mean 67 years), with most (83.8%, 238/284) female. Of 263 followed up, the average attendances was 25, with 19.3% attending on fewer than 4 occasions and 14.3% attending 52 or more times. Most (93.9%) reported no injuries requiring medical attention. However, 16 (6.1%) had injuries requiring medical attention and their 27 injuries represent an injury rate of 3.3 per 1000 hours of participation. Twenty participants (7.6%) had a Lifeball fall equating to a fall rate of 2.8 per 1000 hours of participation. Falls in Lifeball were not associated with measured predictors (age, gender, falls history, perceived falls risk or hours played). Incident records showed a trip/stumble involving rushing, walking backwards, or overextending (all against rules) as common falling causes. Lifeball is not ‘risk free’ however due to a lack of comparative data it is difficult to compare injury rate to relevant activities. Prevention of injury should concentrate on enforcing safety rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between muscle strength and bone mineral density illustrates the positive effect of mechanical loading on bone. But local and systemic factors may affect both muscle and bone tissues. This study investigated the effects of long-term tennis playing on the relationship between lean tissue mass and bone mineral content in the forearms, taking the body dimensions into account. Fifty-two tennis players (age 24.2 +/- 5.8 yrs, 16.2 +/- 6.1 yrs of practice) were recruited. Lean tissue mass (LTM), bone area, bone mineral content (BMC), and bone mineral density were measured at the forearms from a DXA whole-body scan. Grip strength was assessed with a dynamometer. A marked side-to-side difference (p < 0.0001) was found in favor of the dominant forearm in all parameters. Bone area and BMC correlated with grip strength on both sides (r = 0.81 - 0.84, p < 0.0001). The correlations were still significant after adjusting for whole-body BMC body height, or forearm length. This result reinforced the putative role of the muscles in the mechanical loading on bones. In addition, forearm BMC adjusted to LTM or grip strength was higher on the dominant side, suggesting that tennis playing exerts a direct effect on bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The benefit of impact-loading activity for bone strength depends on whether the additional bone mineral content (BMC) accrued at loaded sites is due to an increased bone size, volumetric bone mineral density (vBMD) or both. Using magnetic resonance imaging (MRI) and dual energy X-ray absorptiometry (DXA), the aim of this study was to characterize the geometric changes of the dominant radius in response to long-term tennis playing and to assess the influence of muscle forces on bone tissue by investigating the muscle–bone relationship. Twenty tennis players (10 men and 10 women, mean age: 23.1 ± 4.7 years, with 14.3 ± 3.4 years of playing) were recruited. The total bone volume, cortical volume, sub-cortical volume and muscle volume were measured at both distal radii by MRI. BMC was assessed by DXA and was divided by the total bone volume to derive vBMD. Grip strength was evaluated with a dynamometer. Significant side-to-side differences (P < 0.0001) were found in muscle volume (+9.7%), grip strength (+13.3%), BMC (+13.5%), total bone volume (+10.3%) and sub-cortical volume (+20.6%), but not in cortical volume (+2.6%, ns). The asymmetry in total bone volume explained 75% of the variance in BMC asymmetry (P < 0.0001). vBMD was slightly higher on the dominant side (+3.3%, P < 0.05). Grip strength and muscle volume correlated with all bone variables (except vBMD) on both sides (r = 0.48–0.86, P < 0.05–0.0001) but the asymmetries in muscle parameters did not correlate with those in bone parameters. After adjustment for muscle volume or grip strength, BMC was still greater on the dominant side. This study showed that the greater BMC induced by long-term tennis playing at the dominant radius was associated to a marked increase in bone size and a slight improvement in volumetric BMD, thereby improving bone strength. In addition to the muscle contractions, other mechanical stimuli seemed to exert a direct effect on bone tissue, contributing to the specific bone response to tennis playing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone responds to impact-loading activity by increasing its size and/or density. The aim of this study was to compare the magnitude and modality of the bone response between cortical and trabecular bone in the forearms of tennis players. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the ulna and radius were measured by dual-energy X-ray absorptiometry (DXA) in 57 players (24.5 ± 5.7 yr old), at three sites: the ultradistal region (50% trabecular bone), the mid-distal regions, and third-distal (mainly cortical bone). At the ultradistal radius, the side-to-side difference in BMD was larger than in bone area (8.4 ± 5.2% and 4.9 ± 4.0%, respectively, p < 0.01). In the cortical sites, the asymmetry was lower (p < 0.01) in BMD than in bone area (mid-distal radius: 4.0 ± 4.3% vs 11.7 ± 6.8%; third-distal radius: 5.0 ± 4.8% vs 8.4 ± 6.2%). The asymmetry in bone area explained 33% of the variance of the asymmetry in BMC at the ultradistal radius, 66% at the mid-distal radius, and 53% at the third-distal radius. The ulna displayed similar results. Cortical and trabecular bone seem to respond differently to mechanical loading. The first one mainly increases its size, whereas the second one preferentially increases its density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical loading during growth magnifies the normal increase in bone diameter occurring in long bone shafts, but the response to loading in long bone ends remains unclear. The aim of the study was to investigate the effects of tennis playing during growth at the distal radius, comparing the bone response at trabecular and cortical skeletal sites. The influence of training duration was examined by studying bone response in short-term (children) and long-term (young adults) perspectives. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the radius were measured by DXA in 28 young (11.6 ± 1.4 years old) and 47 adult tennis players (22.3 ± 2.7 years old), and 70 age-matched controls (12 children, 58 adults) at three sites: the ultradistal region (trabecular), the mid-distal region, and the third-distal region (cortical). At the ultradistal radius, young and adult tennis players displayed similar side-to-side differences, the asymmetry in BMC reaching 16.3% and 13.8%, respectively (P < 0.0001). At the mid- and third-distal radius, the asymmetry was much greater in adults than in children (P < 0.0001) for all the bone parameters (mid-distal radius, +6.6% versus +15.6%; third-distal radius, +6.9% versus +13.3%, for BMC). Epiphyseal bone enduring longitudinal growth showed a great capacity to respond to mechanical loading in children. Prolonging tennis playing into adulthood was associated with further increase in bone mineralization at diaphyseal skeletal sites. These findings illustrate the benefits of practicing impact-loading sports during growth and maintaining physical activity into adulthood to enhance bone mass accrual and prevent fractures later in life.