973 resultados para plant functional traits


Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. Intra-specific variation in plant defence traits has been shown to profoundly affect herbivore community structure. Here we describe two experiments designed to test whether similar effects occur at higher trophic levels, by studying pea aphid–natural enemy interactions in a disused pasture in southern England. 2. In the first experiment, the numbers and identity of natural enemies attacking different monoclonal pea aphid colonies were recorded in a series of assays throughout the period of pea aphid activity. 3. In the summer assay, there was a significant effect of clone on the numbers of aphidophagous hoverfly larvae and the total number of non-hoverfly natural enemies recruited. Clone also appeared to influence the attack rate suffered by the primary predator in the system, the hoverfly Episyrphus balteatus, by Diplazon laetatorius, an ichneumonid parasitoid. Colonies were generally driven to extinction by hoverfly attack, resulting in the recording of low numbers of parasitoids and entomopathogens, suggesting intense intra-guild predation. 4. To further examine the influence of clonal variation on the recruitment of natural enemies, a second experiment was performed to monitor the temporal dynamics of community development. Colonies were destructively sampled every other day and the numbers of natural enemies attacking aphid colonies were recorded. These data demonstrated that clonal variation influenced the timing, abundance, and identity of natural enemies attacking aphid colonies. 5. Taken together, these data suggest that clonal variation may have a significant influence on the patterns of interactions between aphids and their natural enemies, and that such effects are likely to affect our understanding of the ecology and biological control of these insect herbivores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large-scale bottom-up estimates of terrestrial carbon fluxes, whether based on models or inventory, are highly dependent on the assumed land cover. Most current land cover and land cover change maps are based on satellite data and are likely to be so for the foreseeable future. However, these maps show large differences, both at the class level and when transformed into Plant Functional Types (PFTs), and these can lead to large differences in terrestrial CO2 fluxes estimated by Dynamic Vegetation Models. In this study the Sheffield Dynamic Global Vegetation Model is used. We compare PFT maps and the resulting fluxes arising from the use of widely available moderate (1 km) resolution satellite-derived land cover maps (the Global Land Cover 2000 and several MODIS classification schemes), with fluxes calculated using a reference high (25 m) resolution land cover map specific to Great Britain (the Land Cover Map 2000). We demonstrate that uncertainty is introduced into carbon flux calculations by (1) incorrect or uncertain assignment of land cover classes to PFTs; (2) information loss at coarser resolutions; (3) difficulty in discriminating some vegetation types from satellite data. When averaged over Great Britain, modeled CO2 fluxes derived using the different 1 km resolution maps differ from estimates made using the reference map. The ranges of these differences are 254 gC m−2 a−1 in Gross Primary Production (GPP); 133 gC m−2 a−1 in Net Primary Production (NPP); and 43 gC m−2 a−1 in Net Ecosystem Production (NEP). In GPP this accounts for differences of −15.8% to 8.8%. Results for living biomass exhibit a range of 1109 gC m−2. The types of uncertainties due to land cover confusion are likely to be representative of many parts of the world, especially heterogeneous landscapes such as those found in western Europe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

• In a free-air CO2 enrichment study (BangorFACE) Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of one, two and three species mixtures (n=4). The trees were exposed to ambient or elevated CO2 (580 µmol mol-1) for four years, and aboveground growth characteristics measured. • In monoculture, the mean effect of CO2 enrichment on aboveground woody biomass was +29, +22 and +16% for A. glutinosa, F. sylvatica, and B. pendula respectively. When the same species were grown in polyculture, the response to CO2 switched to +10, +7 and 0%, for A. glutinosa, B. pendula, and F. sylvatica respectively. • In ambient atmosphere our species grown in polyculture increased aboveground woody biomass from 12.9 ± 1.4 kg m-2 to 18.9 ± 1.0 kg m-2, whereas in an elevated CO2 atmosphere aboveground woody biomass increased from 15.2 ± 0.6 kg m-2 to 20.2 ± 0.6 kg m-2. The overyielding effect of polyculture was smaller (+7%) in elevated CO2 than in an ambient atmosphere (+18%). • Our results show that the aboveground response to elevated CO2 is significantly affected by intra- and inter-specific competition, and that elevated CO2 response may be reduced in forest communities comprised of tree species with contrasting functional traits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to investigate the potential role of vegetation changes in megafaunal extinctions during the later part of the last glacial stage and early Holocene (42–10 ka BP), the palaeovegetation of northern Eurasia and Alaska was simulated using the LPJ-GUESS dynamic vegetation model. Palaeoclimatic driving data were derived from simulations made for 22 time slices using the Hadley Centre Unified Model. Modelled annual net primary productivity (aNPP) of a series of plant functional types (PFTs) is mapped for selected time slices and summarised for major geographical regions for all time slices. Strong canonical correlations are demonstrated between model outputs and pollen data compiled for the same period and region. Simulated aNPP values, especially for tree PFTs and for a mesophilous herb PFT, provide evidence of the structure and productivity of last glacial vegetation. The mesophilous herb PFT aNPP is higher in many areas during the glacial than at present or during the early Holocene. Glacial stage vegetation, whilst open and largely treeless in much of Europe, thus had a higher capacity to support large vertebrate herbivore populations than did early Holocene vegetation. A marked and rapid decrease in aNPP of mesophilous herbs began shortly after the Last Glacial Maximum, especially in western Eurasia. This is likely implicated in extinction of several large herbivorous mammals during the latter part of the glacial stage and the transition to the Holocene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim  This paper documents reconstructions of the vegetation patterns in Australia, Southeast Asia and the Pacific (SEAPAC region) in the mid-Holocene and at the last glacial maximum (LGM). Methods  Vegetation patterns were reconstructed from pollen data using an objective biomization scheme based on plant functional types. The biomization scheme was first tested using 535 modern pollen samples from 377 sites, and then applied unchanged to fossil pollen samples dating to 6000 ± 500 or 18,000 ± 1000 14C yr bp. Results  1. Tests using surface pollen sample sites showed that the biomization scheme is capable of reproducing the modern broad-scale patterns of vegetation distribution. The north–south gradient in temperature, reflected in transitions from cool evergreen needleleaf forest in the extreme south through temperate rain forest or wet sclerophyll forest (WSFW) and into tropical forests, is well reconstructed. The transitions from xerophytic through sclerophyll woodlands and open forests to closed-canopy forests, which reflect the gradient in plant available moisture from the continental interior towards the coast, are reconstructed with less geographical precision but nevertheless the broad-scale pattern emerges. 2. Differences between the modern and mid-Holocene vegetation patterns in mainland Australia are comparatively small and reflect changes in moisture availability rather than temperature. In south-eastern Australia some sites show a shift towards more moisture-stressed vegetation in the mid-Holocene with xerophytic woods/scrub and temperate sclerophyll woodland and shrubland at sites characterized today by WSFW or warm-temperate rain forest (WTRF). However, sites in the Snowy Mountains, on the Southern Tablelands and east of the Great Dividing Range have more moisture-demanding vegetation in the mid-Holocene than today. South-western Australia was slightly drier than today. The single site in north-western Australia also shows conditions drier than today in the mid-Holocene. Changes in the tropics are also comparatively small, but the presence of WTRF and tropical deciduous broadleaf forest and woodland in the mid-Holocene, in sites occupied today by cool-temperate rain forest, indicate warmer conditions. 3. Expansion of xerophytic vegetation in the south and tropical deciduous broadleaf forest and woodland in the north indicate drier conditions across mainland Australia at the LGM. None of these changes are informative about the degree of cooling. However the evidence from the tropics, showing lowering of the treeline and forest belts, indicates that conditions were between 1 and 9 °C (depending on elevation) colder. The encroachment of tropical deciduous broadleaf forest and woodland into lowland evergreen broadleaf forest implies greater aridity. Main conclusions  This study provides the first continental-scale reconstruction of mid-Holocene and LGM vegetation patterns from Australia, Southeast Asia and the Pacific (SEAPAC region) using an objective biomization scheme. These data will provide a benchmark for evaluation of palaeoclimate simulations within the framework of the Palaeoclimate Modelling Intercomparison Project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A biomization method, which objectively assigns individual pollen assemblages to biomes ( Prentice et al., 1996 ), was tested using modern pollen data from Japan and applied to fossil pollen data to reconstruct palaeovegetation patterns 6000 and 18,000 14C yr bp Biomization started with the assignment of 135 pollen taxa to plant functional types (PFTs), and nine possible biomes were defined by specific combinations of PFTs. Biomes were correctly assigned to 54% of the 94 modern sites. Incorrect assignments occur near the altitudinal limits of individual biomes, where pollen transport from lower altitudes blurs the local pollen signals or continuous changes in species composition characterizes the range limits of biomes. As a result, the reconstructed changes in the altitudinal limits of biomes at 6000 and 18,000 14C yr bp are likely to be conservative estimates of the actual changes. The biome distribution at 6000 14C yr bp was rather similar to today, suggesting that changes in the bioclimate of Japan have been small since the mid-Holocene. At 18,000 14C yr bp the Japanese lowlands were covered by taiga and cool mixed forests. The southward expansion of these forests and the absence of broadleaved evergreen/warm mixed forests reflect a pronounced year-round cooling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pollen data from China for 6000 and 18,000 14C yr bp were compiled and used to reconstruct palaeovegetation patterns, using complete taxon lists where possible and a biomization procedure that entailed the assignment of 645 pollen taxa to plant functional types. A set of 658 modern pollen samples spanning all biomes and regions provided a comprehensive test for this procedure and showed convincing agreement between reconstructed biomes and present natural vegetation types, both geographically and in terms of the elevation gradients in mountain regions of north-eastern and south-western China. The 6000 14C yr bp map confirms earlier studies in showing that the forest biomes in eastern China were systematically shifted northwards and extended westwards during the mid-Holocene. Tropical rain forest occurred on mainland China at sites characterized today by either tropical seasonal or broadleaved evergreen/warm mixed forest. Broadleaved evergreen/warm mixed forest occurred further north than today, and at higher elevation sites within the modern latitudinal range of this biome. The northern limit of temperate deciduous forest was shifted c. 800 km north relative to today. The 18,000 14C yr bp map shows that steppe and even desert vegetation extended to the modern coast of eastern China at the last glacial maximum, replacing today’s temperate deciduous forest. Tropical forests were excluded from China and broadleaved evergreen/warm mixed forest had retreated to tropical latitudes, while taiga extended southwards to c. 43°N.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective biomization method developed by Prentice et al. (1996) for Europe was extended using modern pollen samples from Beringia and then applied to fossil pollen data to reconstruct palaeovegetation patterns at 6000 and 18,000 14C yr bp. The predicted modern distribution of tundra, taiga and cool conifer forests in Alaska and north-western Canada generally corresponds well to actual vegetation patterns, although sites in regions characterized today by a mosaic of forest and tundra vegetation tend to be preferentially assigned to tundra. Siberian larch forests are delimited less well, probably due to the extreme under-representation of Larix in pollen spectra. The biome distribution across Beringia at 6000 14C yr bp was broadly similar to today, with little change in the northern forest limit, except for a possible northward advance in the Mackenzie delta region. The western forest limit in Alaska was probably east of its modern position. At 18,000 14C yr bp the whole of Beringia was covered by tundra. However, the importance of the various plant functional types varied from site to site, supporting the idea that the vegetation cover was a mosaic of different tundra types.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BIOME 6000 is an international project to map vegetation globally at mid-Holocene (6000 14C yr bp) and last glacial maximum (LGM, 18,000 14C yr bp), with a view to evaluating coupled climate-biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site-based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present-day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south-western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial-interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now-arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land-surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere-biosphere models. The data could also be objectively generalized to yield realistic gridded land-surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation-climate feedbacks have focused on the hypothesized positive feedback effects of climate-induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid-Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Land surface Processes and eXchanges (LPX) model is a fire-enabled dynamic global vegetation model that performs well globally but has problems representing fire regimes and vegetative mix in savannas. Here we focus on improving the fire module. To improve the representation of ignitions, we introduced a reatment of lightning that allows the fraction of ground strikes to vary spatially and seasonally, realistically partitions strike distribution between wet and dry days, and varies the number of dry days with strikes. Fuel availability and moisture content were improved by implementing decomposition rates specific to individual plant functional types and litter classes, and litter drying rates driven by atmospheric water content. To improve water extraction by grasses, we use realistic plant-specific treatments of deep roots. To improve fire responses, we introduced adaptive bark thickness and post-fire resprouting for tropical and temperate broadleaf trees. All improvements are based on extensive analyses of relevant observational data sets. We test model performance for Australia, first evaluating parameterisations separately and then measuring overall behaviour against standard benchmarks. Changes to the lightning parameterisation produce a more realistic simulation of fires in southeastern and central Australia. Implementation of PFT-specific decomposition rates enhances performance in central Australia. Changes in fuel drying improve fire in northern Australia, while changes in rooting depth produce a more realistic simulation of fuel availability and structure in central and northern Australia. The introduction of adaptive bark thickness and resprouting produces more realistic fire regimes in Australian savannas. We also show that the model simulates biomass recovery rates consistent with observations from several different regions of the world characterised by resprouting vegetation. The new model (LPX-Mv1) produces an improved simulation of observed vegetation composition and mean annual burnt area, by 33 and 18% respectively compared to LPX.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of Sao Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Land use leads to massive habitat destruction and fragmentation in tropical forests. Despite its global dimensions the effects of fragmentation on ecosystem dynamics are not well understood due to the complexity of the problem. We present a simulation analysis performed by the individual-based model FORMIND. The model was applied to the Brazilian Atlantic Forest, one of the world`s biodiversity hot spots, at the Plateau of Sao Paulo. This study investigates the long-term effects of fragmentation processes on structure and dynamics of different sized remnant tropical forest fragments (1-100 ha) at community and plant functional type (PFT) level. We disentangle the interplay of single effects of different key fragmentation processes (edge mortality, increased mortality of large trees, local seed loss and external seed rain) using simulation experiments in a full factorial design. Our analysis reveals that particularly small forest fragments below 25 ha suffer substantial structural changes, biomass and biodiversity loss in the long term. At community level biomass is reduced up to 60%. Two thirds of the mid- and late-successional species groups, especially shade-tolerant (late successional climax) species groups are prone of extinction in small fragments. The shade-tolerant species groups were most strongly affected; its tree number was reduced more than 60% mainly by increased edge mortality. This process proved to be the most powerful of those investigated, explaining alone more than 80% of the changes observed for this group. External seed rain was able to compensate approximately 30% of the observed fragmentation effects for shade-tolerant species. Our results suggest that tropical forest fragments will suffer strong structural changes in the long term, leading to tree species impoverishment. They may reach a new equilibrium with a substantially reduced subset of the initial species pool, and are driven towards an earlier successional state. The natural regeneration potential of a landscape scattered with forest fragments appears to be limited, as external seed rain is not able to fully compensate for the observed fragmentation-induced changes. Our findings suggest basic recommendations for the management of fragmented tropical forest landscapes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mosaicos naturais de floresta e campo são freqüentes no sul do Brasil, apesar das condições climáticas em geral serem favoráveis às formações florestais. Os campos portanto têm sido considerados um tipo de vegetação relictual de um clima mais frio e seco. Dados paleopalinológicos têm confirmado a hipótese de expansão florestal proposta por Lindman e Rambo com base em evidências fitogeográficas. Porém, fogo e pastejo têm sido utilizados no manejo dos campos, limitando o estabelecimento de árvores em áreas de campo, e parecem ser essenciais para a existência dos campos num clima úmido. Mudanças na intensidade ou freqüência do fogo ou do pastejo podem permitir o adensamento de espécies lenhosas em comunidades campestres. Todavia, os processos envolvidos são influenciados pelas condições locais e tipo de espécies pioneiras. Esta tese aborda padrões espaciais de transição da floresta ao campo, na ausência de pastejo, porém sob diferentes condições locais relacionadas à exposição do relevo (norte, sul, sudoeste) e ao fogo. Os dados abrangem arbustos e árvores pela composição de espécies e tipos funcionais de plantas (plant functional types, PFTs), e variáveis do solo em bordas de floresta-campo, sob diferentes períodos de tempo transcorrido desde a última queimada nas áreas de campo. Dados sobre composição, diversidade, categoria de plantas (que rebrotam e não rebrotam) e PFTs foram analisados de acordo com o período de tempo sem fogo em dois levantamentos realizados em anos consecutivos. O objetivo desta última análise foi descrever como reagem as plantas lenhosas em áreas de campo freqüentemente queimadas, num contexto de ecótonos de floresta-campo O estudo foi conduzido no Morro Santana (30°03’ S, 51°07’ W, altitude máxima: 311m), Porto Alegre, RS, Brasil. A vegetação da área apresenta mosaicos de floresta-campo. Os dados foram coletados em seis pares de transecção (4,5 x 58,5 m cada) perpendiculares à borda florestacampo. Cada transecção era composta por seis quadros grandes (LP= 20,25 m²) consecutivos na floresta e sete no campo. Em cada um dos LP, foram instalados três quadros pequenos (SPs) consecutivos, a fim de medir todos os indivíduos iguais ou maiores que 10 cm de altura. Nos LPs, o critério de inclusão foi a altura mínima de 80 cm. Uma queimada experimental foi realizada nos quadros de campo, considerando sempre uma transecção de cada pa r, antes da coleta dos dados. Ao todo foram amostradas 124 espécies lenhosas de 42 famílias. Destas, 90 espécies foram amostradas nos quadros da floresta e 76 nos quadros do campo, das quais 44 foram comuns a ambas as formações (espécies típicas de borda ou pioneiras). No interior da floresta, plântulas e indivíduos jovens de árvores foram significativamente mais abundantes nos quadros próximos da borda, onde os índices de diversidade, eqüidade e riqueza também foram maiores. Os gradientes da floresta ao campo foram analisados como trajetórias de composição em um espaço de ordenação multidimensional. Diferenças nos padrões espaciais reveladas entre locais com exposição distinta foram evidenciadas. Bordas abruptas ocorreram principalmente nas transecções de exposição sul e sudoeste, enquanto transições mais graduais foram observadas no norte As condições do solo também diferiram em relação às exposições predominantes, porém os principais parâmetros variaram conforme a distância espacial do limite da floresta. Assim, apesar dos padrões de vegetação diferirem conforme a exposição predominante, o fator mais importante na explicação dos padrões foi a distância do limite florestal, não somente per se, mas por todos parâmetros correlacionados que variam no gradiente. Em relação aos dois levantamentos realizados em áreas de campo, 31 espécies arbustivas de campo e 45 florestais foram analisadas, das quais 65,8% tinham capacidade de rebrotar. A composição de espécies diferiu com o tempo após o fogo. Densidade, riqueza e diversidade foram menores nos quadros recentemente queimados, principalmente nos sítios com exposição sul. Considerando arbustos de campo, a riqueza e a densidade foram maiores nos quadros não queimados há um e dois anos do que naqueles há mais de três anos. Comparando arbustos com e sem capacidade de rebrotar, os que rebrotam tiveram sempre maior densidade Árvores com capacidade de rebrote predominaram nas áreas com exposição norte, apresentando densidades similares, independente do tempo após o fogo. Porém, árvores sem capacidade de rebrote apresentaram maior densidade nos quadros não queimados. Diferenças na dinâmica de recrutamento de arbustos ou árvores uni- ou multi-caulinares também foram detectadas. Nas análises com base em PFTs, foram identific ados nove PFTs florestais com máxima associação com a variável distância da borda. A habilidade de rebrote foi o principal atributo de plantas florestais que colonizam áreas de campo. A diversidade de PFTs foi maior nos quadros próximos da borda que no interior da floresta. Quatro PFTs foram identificados, entre espécies lenhosas florestais e campestres, com máxima associação com o tempo decorrido após o fogo nas áreas de campo. Alguns dos principais aspectos descritos no parágrafo anterior foram corroborados. Arbustos altos com base uni-caulinar predominaram nas áreas não queimadas (3-4 anos), enquanto arbustos baixos com base multi-caulinar predominaram nas áreas recentemente queimadas (3 meses a 1 ano). PFTs florestais ocorreram nos quadros da borda ou como adultos estabelecidos no campo, não sendo afetados pelo fogo. Com base nos principais resultados, as seguintes conclusões são possíveis: A alta proporção de espécies com capacidade de rebrote nas áreas de campo e a alta taxa de recrutamento das demais espécies caracterizam comunidades com distúrbios freqüentes e espécies bem adaptadas. O regime de fogo com intervalos de dois a três anos não impede o adensamento de arbustos do campo, porém retarda o avanço de espécies arbóreas florestais, exceto em sítios bastante próximos a borda ou em “ilhas” protegidas do fogo intenso PFTs lenhosos de áreas de campo, associados com os intervalos de fogo, sugerem que atributos facilmente mensurados são suficientes para avaliar a dinâmica pós-fogo em comunidades de espécies lenhosas. PFTs florestais nas áreas de campo se restringem àqueles com capacidade de rebrote, para sobreviver às queimadas recorrentes. Com base nas estratégias das plantas, nos PFTs e no padrão espacial das espécies nas bordas de floresta-campo sob influência freqüente do fogo, nós reforçamos a presença de dois mecanismos principais como formas de expansão florestal. Um deles refere-se ao adensamento gradual de espécies arbóreas junto à borda, em áreas cujo intervalo de tempo sem fogo é maior. Outro está relacionado ao recrutamento de árvores pioneiras isoladas no campo, freqüentemente próximo de matacões, onde menor biomassa de gramíneas conduz a menor intensidade do fogo. O fogo é portanto um fator de prevenção da expansão florestal sobre as áreas adjacentes de campo nas condições atuais de clima úmido. O presente regime de distúrbio permite a manutenção de uma elevada biodiversidade na paisagem dos morros de Porto Alegre pela co-ocorrência de ecossistemas ricos em espécies distintas (campos e florestas); a supressão de queimadas pode alterar o mosaico de tipos de hábitat, aumentando a proporção de áreas florestais.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ecologists usually estimate means, but devote much less attention to variation. The study of variation is a key aspect to understand natural systems and to make predictions regarding them. In community ecology, most studies focus on local species diversity (alpha diversity), but only in recent decades have ecologists devoted proper attention to variation in community composition among sites (beta diversity). This is in spite of the fact that the first attempts to estimate beta diversity date back to the pioneering work by Koch and Whittaker in the 1950s. Progress in the last decade has been made in the development both of methods and of hypotheses about the origin and maintenance of variation in community composition. For instance, methods are available to partition total diversity in a region (gamma diversity), in a local component (alpha), and several beta diversities, each corresponding to one scale in a hierarchy. The popularization of the so-called raw-data approach (based on partial constrained ordination techniques) and the distance-based approach (based on correlation of dissimilarity/distance matrices) have allowed many ecologists to address current hypotheses about beta diversity patterns. Overall, these hypotheses are based on niche and neutral theory, accounting for the relative roles of environmental and spatial processes (or a combination of them) in shaping metacommunities. Recent studies have addressed these issues on a variety of spatial and temporal scales, habitats and taxonomic groups. Moreover, life history and functional traits of species such as dispersal abilities and rarity have begun to be considered in studies of beta diversity. In this article we briefly review some of these new tools and approaches developed in recent years, and illustrate them by using case studies in aquatic ecosystems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the most intriguing questions in ecology is how to identify which and how many species will be able to inhabit human-modified landscapes. Large-bodied mammals structure plant communities by trampling, herbivory, seed dispersal and predation, and their local extinction may have pervasive consequences in plant communities due to the breakdown of key interactions. Although much attention has been given to understanding the effects of defaunation on plant communities, information on the potential impacts on plant functional groups (seed dispersal, seed size and seedling leaves defense) inhabiting continuous forests after defaunation is scarce. We conducted mammal surveys (line transects and camera trapping) to determine the defaunation status of a continuous Atlantic forest in Brazil. Then, we evaluated the effects of defaunation on seedling diversity, richness and abundance of functional groups using 15 plot-pairs (each pair with one open and one exclusion plot) monitored over 36. months. We found that the studied area is partially defaunated because it exhibits high abundance of primates, while terrestrial mammals, such as large rodents and ungulates, are rare. We found no significant changes in either seedling richness and diversity or in the seedling composition of plant functional groups in response to mammal exclosure. Seedling mortality and recruitment were similar between plot types. Our findings suggest that at semi-defaunated areas, where arboreal species are still present, terrestrial mammals have low impacts on the plant community reassembly. © 2013 Elsevier Ltd.