987 resultados para plankton community


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The community structure of zooplankton was studied in a eutrophic, fishless Japanese pond. The ecosystem was dominated by a dinoflagellate, Ceratium hirundinella, two filter-feeding cladocerans, Daphnia rosea and Ceriodaphnia reticulata, and an invertebrate predator, the dipteran Chaoborus flavicans. The midsummer zooplankton community showed a large change in species composition (the Daphnia population crashed) when a heavy Ceratium bloom occurred. It is shown that (i) the rapid density decline of D.rosea in mid-May was mainly caused by a shortage of edible phytoplankton, which was facilitated by the rapid increase in C.hirundinella abundance; (ii) the low density of D.rosea in June-July was considered to be mainly caused by the blooming of Ceratium hirundinella (which may inhibit the feeding process of D.rosea), while predation by C.flavicans larvae, the changing temperature, the interspecific competition and the scarcity of edible algae were not judged to be important; (iii) the high summer biomass of the planktonic C.flavicans larvae was maintained by the bloom of C.hirundinella, because >90% of the crop contents of C.flavicans larvae were C.hirundinella during this period. The present study indicates that the large-sized cells or colonies of phytoplankton are not only inedible by most cladocerans, but the selective effect of the blooming of these algae can also influence the composition and dominance of the zooplankton community, especially for the filter-feeding Cladocera, in a similar way as the selective predation by planktivorous fish. The large-sized phytoplankton can also be an important alternative food for ominivorous invertebrate predators such as Chaoborus larvae, and thus may affect the interactions between these predators and their zooplanktonic prey. In this way, such phytoplankton may play a very important role in regulating the dynamics of the aquatic food web, and become a driving force in shaping the community structure of zooplankton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous plankton recorder (CPR) survey is the largest multi-decadal plankton monitoring programme in the world. It was initiated in 1931 and by the end of 2004 had counted 207,619 samples and identified 437 phyto- and zooplankton taxa throughout the North Atlantic. CPR data are used extensively by the research community and in recent years have been used increasingly to underpin marine management. Here, we take a critical look at how best to use CPR data. We first describe the CPR itself, CPR sampling, and plankton counting procedures. We discuss the spatial and temporal biases in the Survey, summarise environmental data that have not previously been available, and describe the new data access policy. We supply information essential to using CPR data, including descriptions of each CPR taxonomic entity, the idiosyncrasies associated with counting many of the taxa, the logic behind taxonomic changes in the Survey, the semi-quantitative nature of CPR sampling, and recommendations on choosing the spatial and temporal scale of study. This forms the basis for a broader discussion on how to use CPR data for deriving ecologically meaningful indices based on size, functional groups and biomass that can be used to support research and management. This contribution should be useful for plankton ecologists, modellers and policy makers that actively use CPR data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Continuous Plankton Recorder (CPR) survey, operated by the Sir Alister Hardy Foundation for Ocean Science (SAHFOS), is the largest plankton monitoring programme in the world and has spanned >70 yr. The dataset contains information from ~200 000 samples, with over 2.3 million records of individual taxa. Here we outline the evolution of the CPR database through changes in technology, and how this has increased data access. Recent high-impact publications and the expanded role of CPR data in marine management demonstrate the usefulness of the dataset. We argue that solely supplying data to the research community is not sufficient in the current research climate; to promote wider use, additional tools need to be developed to provide visual representation and summary statistics. We outline 2 software visualisation tools, SAHFOS WinCPR and the digital CPR Atlas, which provide access to CPR data for both researchers and non-plankton specialists. We also describe future directions of the database, data policy and the development of visualisation tools. We believe that the approach at SAHFOS to increase data accessibility and provide new visualisation tools has enhanced awareness of the data and led to the financial security of the organisation; it also provides a good model of how long-term monitoring programmes can evolve to help secure their future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the eastward-flowing North Pacific Current approaches the North American continent it bifurcates into the southward-flowing California Current and the northward-flowing Alaska Current. This bifurcation occurs in the south-eastern Gulf of Alaska and can vary in position. Dynamic height data from Project Argo floats have recently enabled the creation of surface circulation maps which show the likely position of the bifurcation; during 2002 it was relatively far north at 53 degrees N then, during early 2003, it moved southwards to a more normal position at 45 degrees N. Two ship-of-opportunity transects collecting plankton samples with a Continuous Plankton Recorder across the Gulf of Alaska were sampled seasonally during 2002 and 2003. Their position was dependent on the commercial ship's operations; however, most transects sampled across the bifurcation. We show that the oceanic plankton differed in community composition according to the current system they occurred in during spring and fall of 2002 and 2003, although winter populations were more mixed. Displacement of the plankton communities could have impacts on the plankton's reproduction and development if they use cues such as day length, and also on foraging of higher trophic-level organisms that use particular regions of the ocean if the nutritional value of the communities is different. Although we identify some indicator taxa for the Alaska and California currents, functional differences in the plankton communities on either side of the bifurcation need to be better established to determine the impacts of bifurcation movement on the ecosystems of the north-east Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton phenology and community structure in the western North Pacific were investigated for 2001–2009, based on satellite ocean colour data and the Continuous Plankton Recorder survey. We estimated the timing of the spring bloom based on the cumulative sum satellite chlorophyll adata, and found that the Pacific Decadal Oscillation (PDO)-related interannual SST anomaly in spring significantly affected phytoplankton phenology. The bloom occurred either later or earlier in years of positive or negative PDO (indicating cold and warm conditions, respectively). Phytoplankton composition in the early summer varied depending on the magnitude of seasonal SST increases, rather than the SST value itself. Interannual variations in diatom abundance and the relative abundance of non-diatoms were positively correlated with SST increases for March–April and May–July, respectively, suggesting that mixed layer environmental factors, such as light availability and nutrient stoichiometry, determine shifts in phytoplankton community structure. Our study emphasised the importance of the interannual variation in climate-induced warm–cool cycles as one of the key mechanisms linking climatic forcing and lower trophic level ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some commercial fish species of the northeast Atlantic Ocean have relocated in response to warming. The impact of warming on marine assemblages in the region may already be much greater than appreciated, however, with over 70% of common demersal fish species responding through changes in abundance, rather than range. The northeast Atlantic Ocean is one of the most productive marine ecoregions in the world with a substantial commercial fishery. It is also a region that has undergone particularly rapid warming over the past 50 years, up to four times faster than the global average1. Compared with other marine regions worldwide, the biological response in the northeast Atlantic Ocean has been particularly dramatic, reflecting this rapid warming. Studies have documented biogeographical movements in marine plankton of over 1,000 km northwards2 and advances in the onset of key life-history events by six to eight weeks3. In addition, there has been limited evidence of distributional shifts in some fish species along latitudinal and depth gradients in response to warming4, 5. Writing in Current Biology, Stephen Simpson and colleagues6 present the most comprehensive analysis so far of the impact of warming on commercially important European continental-shelf fish species in the region, and in doing so show that there has been a profound reorganization of local communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the mechanisms that structure communities and influence biodiversity are fundamental goals of ecology. To test the hypothesis that the abundance and diversity of upper-trophic level predators (seabirds) is related to the underlying abundance and diversity of their prey (zooplankton) and ecosystem-wide energy availability (primary production), we initiated a monitoring program in 2002 that jointly and repeatedly surveys seabird and zooplankton populations across a 7,500 km British Columbia-Bering Sea-Japan transect. Seabird distributions were recorded by a single observer (MH) using a strip-width technique, mesozooplankton samples were collected with a Continuous Plankton Recorder, and primary production levels were derived using the appropriate satellite parameters and the Vertically Generalized Production Model (Behrenfeld and Falkowski 1997). Each trophic level showed clear spatio-temporal patterns over the course of the study. The strongest relationship between seabird abundance and diversity and the lower trophic levels was observed in March/April ('spring') and significant relationships were also found through June/July ('summer'). No discernable relationships were observed during the September/October ('fall') months. Overall, mesozooplankton abundance and biomass explained the dominant portion of seabird abundance and diversity indices (richness, Simpson's Index, and evenness), while primary production was only related to seabird richness. These findings underscore the notion that perturbations of ocean productivity and lower trophic level ecosystem constituents influenced by climate change, such as shifts in timing (phenology) and synchronicity (match-mismatch), could impart far-reaching consequences throughout the marine food web.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing availability and extent of biological ocean time series (from both in situ and satellite data) have helped reveal significant phenological variability of marine plankton. The extent to which the range of this variability is modified as a result of climate change is of obvious importance. Here we summarize recent research results on phenology of both phytoplankton and zooplankton. We suggest directions to better quantify and monitor future plankton phenology shifts, including (i) examining the main mode of expected future changes (ecological shifts in timing and spatial distribution to accommodate fixed environmental niches vs. evolutionary adaptation of timing controls to maintain fixed biogeography and seasonality), (ii) broader understanding of phenology at the species and community level (e.g. for zooplankton beyond Calanus and for phytoplankton beyond chlorophyll), (iii) improving and diversifying statistical metrics for indexing timing and trophic synchrony and (iv) improved consideration of spatio-temporal scales and the Lagrangian nature of plankton assemblages to separate time from space changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies relating biodiversity to ecosystem processes typically do not take into account changes in biodiversity through time. Marine systems are highly dynamic, with biodiversity changing at diel, seasonal and inter-decadal timescales. We examined the dynamics of biodiversity in the Gulf of Maine pelagic zooplankton community. Taxonomic data came from the Gulf of Maine continuous plankton recorder (CPR) transect, spanning the years 1961–2006. The CPR transect also contains coincident information on temperature and phytoplankton biomass (measured by the phytoplankton color index). Taxonomic richness varied at all timescales considered. The relationships between temperature and richness, and between phytoplankton and richness, also depended on temporal scale. The temperature–richness relationship was monotonic at the multi-decadal scale, and tended to be hump-shaped at finer scales; the productivity–richness relationship was hump-shaped at the multi-decadal scale, and tended to be monotonic at finer scales. Seasonal biodiversity dynamics were linked to temperature; inter-decadal biodiversity dynamics were linked to phytoplankton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The North Atlantic Oscillation (NAO) is a major mode of variability in the North Atlantic, dominating atmospheric and oceanic conditions. Here, we examine the phytoplankton community-structure response to the NAO using the Continuous Plankton Recorder data set. In the Northeast Atlantic, in the transition region between the gyres, variability in the relative influence of subpolar or subtropical-like conditions is reflected in the physical environment. During positive NAO periods, the region experiences subpolar-like conditions, with strong wind stress and deep mixed layers. In contrast, during negative NAO periods, the region shifts toward more subtropical-like conditions. Diatoms dominate the phytoplankton community in positive NAO periods, whereas in negative NAO periods, dinoflagellates outcompete diatoms. The implications for interannual variability in deep ocean carbon flux are examined using data from the Porcupine Abyssal Plain time-series station. Contrary to expectations, carbon flux to 3000 m is enhanced when diatoms are outcompeted by other phytoplankton functional types. Additionally, highest carbon fluxes were not associated with an increase in biomineral content, which implies that ballasting is not playing a dominant role in controlling the flux of material to the deep ocean in this region. In transition zones between gyre systems, phytoplankton populations can change in response to forcing induced by opposing NAO phases.