517 resultados para piezoelectric polyers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the cross-talk and its effects in the performance of a matrix array of piezoelectric elements is an important issue. This corresponds to the study of the cross mode of vibration of each one of the piezoelectric elements that form the ultrasonic array. The aim is to detect and measure the cross-talk that is generated for the cross mode of vibration. In order to accomplish this task, an array of 2x3 elements was designed and developed. This was constructed using 8 MHz piezoelectric ceramics. A number of configurations have been experimented, considering the excitation of an increasing number of elements, in order to detect and measure the propagation of wave interference. Initial results show the way cross-talk interferes the beam generated by the array, this causing attenuation of the main beam and other negative effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present the assessment of the structural and piezoelectric properties of Al(0.5-x)TixN0.5 compounds (titanium content menor que6% atomic), which are expected to possess improved properties than conventional AlN films, such as larger piezoelectric activity, thermal stability of frequency and temperature resistance. Al:Ti:N films were deposited from a twin concentric target of Al and Ti by reactive AC sputtering, which provided films with a radial gradient of the Ti concentration. The properties of the films were investigated as a function of their composition, which was measured by electron dispersive energy dispersive X-ray spectroscopy and Rutherford backscattering spectrometry. The microstructure and morphology of the films were assessed by X-ray diffraction and infrared reflectance. Their electroacoustic properties and dielectric constant were derived from the frequency response of BAW test resonators. Al:Ti:N films properties appear to be strongly dependent on the Ti content, which modifies the AlN wurtzite crystal structure leading to greater dielectric constant, lower sound velocities, lower electromechanical factor and moderately improved temperature coefficient of the resonant frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta comunicación se presenta el método para obtener modelos equivalentes eléctricos de materiales piezoeléctricos utilizados en entornos con tráfico vial para aplicaciones "Energy Harvesting". Los resultados experimentales se procesan para determinar la estructura topológica óptima y la tecnología de los elementos semiconductores utilizados en la etapa de entrada del sistema de alimentación "harvesting". Asimismo se presenta el modelo de la fuente de alimentación no regulada bajo demanda variable de corriente. Abstract: The method to obtain electrical equivalent models of piezoelectric materials used in energy harvesting road traffic environment is presented in this paper. The experimental results are processed in order to determine the optimal topological structure and technology of the semiconductor elements used in the input stage of the power harvesting system. The non regulated power supply model under variable current demand is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the simulation and characterization of an ultrasonic transducer using a new material called Rexolite to be used as a matching element. This transducer was simulated using a commercial piezoelectric ceramic PIC255 at 8 MHz. Rexolite, the new material, presents an excellent acoustic matching, specially in terms of the acoustic impedance of water. Finite elements simulations were used in this work. Rexolite was considered as a suitable material in the construction of the transducer due to its malleability and acoustic properties, to validate the simulations a prototype transducer was constructed. Experimental measurements were used to determine the resonance frequency of the prototype transducer. Simulated and experimental results were very similar showing that Rexolite may be an excellent matching, particularly for medical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes an acoustic system that allows the automatic detection and location of mechanical impacts on metallic based structures, which is suitable in robotics and industrial applications. The system is based on the time delays of propagation of the acoustic waves along the metallic based structure and it determines the instant and the position when and were the impact has been produced by piezoelectric sensors and an electronic-computerized system. We have obtained that for distance impact of 40 cm and 50 cm the time delay is 2 s and 72 s respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project reports on a literature review about piezoelectric loudspeakers and on an experimental research about how to improve some features of a particular horned piezoelectric tweeter. The work involves an investigation of the performance and principle of operation of piezoelectric loudspeakers to understand how the sound is generated and what its main parameters are. Also, previous research papers about how to improve this type of speakers are reported. The knowledge gained was used to reconsider and re-purpose a particular piezoelectric transducer. After characterising the original state of the device with acoustical and electroacoustical measurements, some improvements were implemented. Moreover, interesting conclusions were reached based on the results of the tests that were carried out. A structural study with a scanning laser was then completed. These sections demonstrated the need for providing the speaker with a rear suspension that guides the vibration of the membrane. Finally, an inverse filter was designed in order to get a flat output response. After simulating the results with Matlab, validating experiments were run in the anechoic chamber with great success. RESUMEN. Este proyecto consta de un estudio detallado sobre piezoelectricidad y altavoces piezoeléctricos, así como de una parte experimental consistente en mejorar algunas características de un altavoz piezoeléctrico particular: un tweeter de bocina. El estudio profundiza en cuáles son los principios de funcionamiento y los principales parámetros de este tipo de altavoces. Con el conocimiento adquirido a partir de trabajos de previos sobre el tema e investigación bibliográfica se ha llevado a cabo la parte experimental. Esta parte ha requerido de una serie de medidas acústicas y electroacústicas para, primero, caracterizar el altavoz en su estado original y para posteriormente buscar y validar posibles mejoras, principalmente en la respuesta en frecuencia. Además, se ha realizado un estudio estructural del diafragma a partir de medidas tomadas con un vibrómetro laser Doppler. De estos tres procesos se concluyó que el altavoz bajo estudio tiene un problema en el soporte del cristal piezoeléctrico y se demostró la necesidad de equipar el dispositivo de una suspensión trasera que controle el movimiento del diafragma. Finalmente, se ha diseñado e implementado en Matlab un filtro inverso, con el objetivo de conseguir una respuesta plana a la salida del altavoz. Su funcionamiento fue validado en la cámara anecoica satisfactoriamente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El gran crecimiento de los sistemas MEMS (Micro Electro Mechanical Systems) así como su presencia en la mayoría de los dispositivos que usamos diariamente despertó nuestro interés. Paralelamente, la tecnología CMOS (Complementary Metal Oxide Semiconductor) es la tecnología más utilizada para la fabricación de circuitos integrados. Además de ventajas relacionadas con el funcionamiento electrónico del dispositivo final, la integración de sistemas MEMS en la tecnología CMOS reduce significantemente los costes de fabricación. Algunos de los dispositivos MEMS con mayor variedad de aplicaciones son los microflejes. Estos dispositivos pueden ser utilizados para la extracción de energía, en microscopios de fuerza atómica o en sensores, como por ejemplo, para biodetección. Los materiales piezoeléctricos más comúnmente utilizados en aplicaciones MEMS se sintetizan a altas temperaturas y por lo tanto no son compatibles con la tecnología CMOS. En nuestro caso hemos usado nitruro de alumino (AlN), que se deposita a temperatura ambiente y es compatible con la tecnología CMOS. Además, es biocompatible, y por tanto podría formar parte de un dispositivo que actúe como biosensor. A lo largo de esta tesis hemos prestado especial atención en desarrollar un proceso de fabricación rápido, reproducible y de bajo coste. Para ello, todos los pasos de fabricación han sido minuciosamente optimizados. Los parámetros de sputtering para depositar el AlN, las distintas técnicas y recetas de ataque, los materiales que actúan como electrodos o las capas sacrificiales para liberar los flejes son algunos de los factores clave estudiados en este trabajo. Una vez que la fabricación de los microflejes de AlN ha sido optimizada, fueron medidos para caracterizar sus propiedades piezoeléctricas y finalmente verificar positivamente su viabilidad como dispositivos piezoeléctricos. ABSTRACT The huge growth of MEMS (Micro Electro Mechanical Systems) as well as their presence in most of our daily used devices aroused our interest on them. At the same time, CMOS (Complementary Metal Oxide Semiconductor) technology is the most popular technology for integrated circuits. In addition to advantages related with the electronics operation of the final device, the integration of MEMS with CMOS technology reduces the manufacturing costs significantly. Some of the MEMS devices with a wider variety of applications are the microcantilevers. These devices can be used for energy harvesting, in an atomic force microscopes or as sensors, as for example, for biodetection. Most of the piezoelectric materials used for these MEMS applications are synthesized at high temperature and consequently are not compatible with CMOS technology. In our case we have used aluminum nitride (AlN), which is deposited at room temperature and hence fully compatible with CMOS technology. Otherwise, it is biocompatible and and can be used to compose a biosensing device. During this thesis work we have specially focused our attention in developing a high throughput, reproducible and low cost fabrication process. All the manufacturing process steps of have been thoroughly optimized in order to achieve this goal. Sputtering parameters to synthesize AlN, different techniques and etching recipes, electrode material and sacrificial layers are some of the key factors studied in this work to develop the manufacturing process. Once the AlN microcantilevers fabrication was optimized, they were measured to characterize their piezoelectric properties and to successfully check their viability as piezoelectric devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes a new application of non-parametric statistical processing of signals recorded from vibration tests for damage detection and evaluation on I-section steel segments. The steel segments investigated constitute the energy dissipating part of a new type of hysteretic damper that is used for passive control of buildings and civil engineering structures subjected to earthquake-type dynamic loadings. Two I-section steel segments with different levels of damage were instrumented with piezoceramic sensors and subjected to controlled white noise random vibrations. The signals recorded during the tests were processed using two non-parametric methods (the power spectral density method and the frequency response function method) that had never previously been applied to hysteretic dampers. The appropriateness of these methods for quantifying the level of damage on the I-shape steel segments is validated experimentally. Based on the results of the random vibrations, the paper proposes a new index that predicts the level of damage and the proximity of failure of the hysteretic damper

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"U.S. Atomic Energy Commission Plowshare Program ; Project Gnome, Carlsbad, New Mexico, December 10, 1961"--Cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the input-output characteristics of structural health monitoring systems for composite plates based on permanently attached piezoelectric transmitter and sensor elements. Using dynamic piezoelectricity theory and a multiple integral transform method to describe the propagating and scattered flexural waves an electro-mechanical model for simulating the voltage input-output transfer function for circular piezoelectric transmitters and sensors adhesively attached to an orthotropic composite plate is developed. The method enables the characterization of all three physical processes, i.e. wave generation, wave propagation and wave reception. The influence of transducer, plate and attached electrical circuit characteristics on the voltage output behaviour of the system is examined through numerical calculations, both in frequency and the time domain. The results show that the input-output behaviour of the system is not properly predicted by the transducers' properties alone. Coupling effects between the transducers and the tested structure have to be taken into account, and adding backing materials to the piezoelectric elements can significantly improve the sensitivity of the system. It is shown that in order to achieve maximum sensitivity, particular piezoelectric transmitters and sensors need to be designed according to the structure to be monitored and the specific frequency regime of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the non-linear bending behaviour of functionally graded plates that are bonded with piezoelectric actuator layers and subjected to transverse loads and a temperature gradient based on Reddy's higher-order shear deformation plate theory. The von Karman-type geometric non-linearity, piezoelectric and thermal effects are included in mathematical formulations. The temperature change is due to a steady-state heat conduction through the plate thickness. The material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The plate is clamped at two opposite edges, while the remaining edges can be free, simply supported or clamped. Differential quadrature approximation in the X-axis is employed to convert the partial differential governing equations and the associated boundary conditions into a set of ordinary differential equations. By choosing the appropriate functions as the displacement and stress functions on each nodal line and then applying the Galerkin procedure, a system of non-linear algebraic equations is obtained, from which the non-linear bending response of the plate is determined through a Picard iteration scheme. Numerical results for zirconia/aluminium rectangular plates are given in dimensionless graphical form. The effects of the applied actuator voltage, the volume fraction exponent, the temperature gradient, as well as the characteristics of the boundary conditions are also studied in detail. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin, piezoelectric circular plates are frequently used as active components in transducer and smart materials applications. This paper reports on the exact, explicit solution for the transient motion of a piezoelectric circular plate, built-in or simply supported on the edge and electrically grounded over the entire surface. Expressed by elementary Bessel functions and obtained via exact inverse Laplace transforms, the solution enables the efficient calculation of accurate system parameters. (C) 2004 Elsevier Ltd. All rights reserved.