980 resultados para phylogenetic.
Resumo:
Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps. Methods Using the quadratic diversity measure based on six functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), leaf carbon content (C), leaf nitrogen content (N), and leaf carbon to nitrogen content (C/N) alongside a species-resolved phylogenetic tree, we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps. Important findings Our study highlights two main points. First, climate and land use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land use factors in plant functional and phylogenetic community turnover, and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.
Resumo:
Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.
Resumo:
Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.
Resumo:
Many species contain genetic lineages that are phylogenetically intermixed with those of other species. In the Sorex araneus group, previous results based on mtDNA and Y chromosome sequence data showed an incongruent position of Sorex granarius within this group. In this study, we explored the relationship between species within the S. araneus group, aiming to resolve the particular position of S. granarius. In this context, we sequenced a total of 2447 base pairs (bp) of X-linked and nuclear genes from 47 individuals of the S. araneus group. The same taxa were also analyzed within a Bayesian framework with nine autosomal microsatellites. These analyses revealed that all markers apart from mtDNA showed similar patterns, suggesting that the problematic position of S. granarius is best explained by an incongruent behavior by mtDNA. Given their close phylogenetic relationship and their close geographic distribution, the most likely explanation for this pattern is past mtDNA introgression from S. araneus race Carlit to S. granarius.
Resumo:
Contact structure is believed to have a large impact on epidemic spreading and consequently using networks to model such contact structure continues to gain interest in epidemiology. However, detailed knowledge of the exact contact structure underlying real epidemics is limited. Here we address the question whether the structure of the contact network leaves a detectable genetic fingerprint in the pathogen population. To this end we compare phylogenies generated by disease outbreaks in simulated populations with different types of contact networks. We find that the shape of these phylogenies strongly depends on contact structure. In particular, measures of tree imbalance allow us to quantify to what extent the contact structure underlying an epidemic deviates from a null model contact network and illustrate this in the case of random mixing. Using a phylogeny from the Swiss HIV epidemic, we show that this epidemic has a significantly more unbalanced tree than would be expected from random mixing.
Resumo:
We examined phylogenetic relationships among six species representing three subfamilies, Glirinae, Graphiurinae and Leithiinae with sequences from three nuclear protein-coding genes (apolipoprotein B, APOB; interphotoreceptor retinoid-binding protein, IRBP; recombination-activating gene 1, RAG1). Phylogenetic trees reconstructed from maximum-parsimony (MP), maximum-likelihood (ML) and Bayesian-inference (BI) analyses showed the monophyly of Glirinae (Glis and Glirulus) and Leithiinae (Dryomys, Eliomys and Muscardinus) with strong support, although the branch length maintaining this relationship was very short, implying rapid diversification among the three subfamilies. Divergence time estimates were calculated from ML (local clock model) and Bayesian-dating method using a calibration point of 25 Myr (million years) ago for the divergence between Glis and Glirulus, and 55 Myr ago for the split between lineages of Gliridae and Sciuridae on the basis of fossil records. The results showed that each lineage of Graphiuros, Glis, Glirulus and Muscardinus dates from the Late Oligocene to the Early Miocene period, which is mostly in agreement with fossil records. Taking into account that warm climate harbouring a glirid-favoured forest dominated from Europe to Asia during this period, it is considered that this warm environment triggered the prosperity of the glirid species through the rapid diversification. Glirulus japonicas is suggested to be a relict of this ancient diversification during the warm period.
Resumo:
We describe an improved multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) scheme for genotyping Staphylococcus aureus. We compare its performance to those of multilocus sequence typing (MLST) and spa typing in a survey of 309 strains. This collection includes 87 epidemic methicillin-resistant S. aureus (MRSA) strains of the Harmony collection, 75 clinical strains representing the major MLST clonal complexes (CCs) (50 methicillin-sensitive S. aureus [MSSA] and 25 MRSA), 135 nasal carriage strains (133 MSSA and 2 MRSA), and 13 published S. aureus genome sequences. The results show excellent concordance between the techniques' results and demonstrate that the discriminatory power of MLVA is higher than those of both MLST and spa typing. Two hundred forty-two genotypes are discriminated with 14 VNTR loci (diversity index, 0.9965; 95% confidence interval, 0.9947 to 0.9984). Using a cutoff value of 45%, 21 clusters are observed, corresponding to the CCs previously defined by MLST. The variability of the different tandem repeats allows epidemiological studies, as well as follow-up of the evolution of CCs and the identification of potential ancestors. The 14 loci can conveniently be analyzed in two steps, based upon a first-line simplified assay comprising a subset of 10 loci (panel 1) and a second subset of 4 loci (panel 2) that provides higher resolution when needed. In conclusion, the MLVA scheme proposed here, in combination with available on-line genotyping databases (including http://mlva.u-psud.fr/), multiplexing, and automatic sizing, can provide a basis for almost-real-time large-scale population monitoring of S. aureus.
Resumo:
The precise generic delimitation of Aliella andPhagnalon, and their closest relatives within the Gnaphalieae are discussed in this review. Among the main results obtained, wehave found that the genera Aliella and Phagnalon are nested withinthe “Relhania clade” and Anisothrix, Athrixia and Pentatrichia aretheir closest relatives. Macowania is also part of the “Relhaniaclade”, whereas the subtribal affinities of Philyrophyllum liewithin the “crown radiation clade”. The monophyly of Aliellaand Phagnalon is not supported statistically. In addition,Aliella appears to be paraphylethic in most of the analysesperformed. The resulting phylogeny suggests an African origin forthe ancestor of Aliella and Phagnalon and identifies three mainclades within Phagnalon that constitute the following naturalgroups on a geographic basis: (1) the Irano-Turanian clade; (2) the Mediterranean-Macaronesian clade; and (3) the Yemen-Ethiopian clade. Some endemics to Yemen and Ethiopia appeared merged in the Mediterranean-Macaronesian clade, providing new evidence of the phytogeographical links betweenMacaronesia, Eastern Africa and Southern Arabia. Incongruities between thechloroplast and nuclear molecular data and the lack of resolution in some clades mayindicate that hybridization could have played an important role in the evolution anddiversification of both Phagnalon and Aliella.
Resumo:
Lipoxygenases are non-heme iron enzymes essential in eukaryotes, where they catalyze the formation of the fatty acid hydroperoxides that are required by a large diversity of biological and pathological processes. In prokaryotes, most of them totally lacking in polyunsaturated fatty acids, the possible biological roles oflipoxygenases have remained obscure. In this study, it is reported the crystallization of a lipoxygenase of Pseudomonas aeruginosa (Pa_LOX), the first from a prokaryote. High resolution data has been acquired which is expected to yield structural clues to the questions adressed. Besides, a preliminar phylogenetic analysis using 14 sequences has confirmed the existence of this subfamily of bacterial lipoxygenases, on one side, and a greater diversity than in the corresponding eukaryotic ones, on the other. Finally, an evolutionary study of bacteriallipoxygenases on the same set of lipoxygenases, show a selection pressure of a basically purifying or neutral character except for a single aminoacid, which would have been selected after a positive selection event.
Resumo:
Lipoxygenases are non-heme iron enzymes essential in eukaryotes, where they catalyze the formation of the fatty acid hydroperoxides that are required by a large diversity of biological and pathological processes. In prokaryotes, most of them totally lacking in polyunsaturated fatty acids, the possible biological roles oflipoxygenases have remained obscure. In this study, it is reported the crystallization of a lipoxygenase of Pseudomonas aeruginosa (Pa_LOX), the first from a prokaryote. High resolution data has been acquired which is expected to yield structural clues to the questions adressed. Besides, a preliminar phylogenetic analysis using 14 sequences has confirmed the existence of this subfamily of bacterial lipoxygenases, on one side, and a greater diversity than in the corresponding eukaryotic ones, on the other. Finally, an evolutionary study of bacteriallipoxygenases on the same set of lipoxygenases, show a selection pressure of a basically purifying or neutral character except for a single aminoacid, which would have been selected after a positive selection event.
Resumo:
Cutaneous leishmaniases have persisted for centuries as chronically disfiguring parasitic infections affecting millions of people across the subtropics. Symptoms range from the more prevalent single, self-healing cutaneous lesion to a persistent, metastatic disease, where ulcerations and granulomatous nodules can affect multiple secondary sites of the skin and delicate facial mucosa, even sometimes diffusing throughout the cutaneous system as a papular rash. The basis for such diverse pathologies is multifactorial, ranging from parasite phylogeny to host immunocompetence and various environmental factors. Although complex, these pathologies often prey on weaknesses in the innate immune system and its pattern recognition receptors. This review explores the observed and potential associations among the multifactorial perpetrators of infectious metastasis and components of the innate immune system.
Arbuscular mycorrhizal fungi mediate below-ground plant-herbivore interactions: a phylogenetic study
Resumo:
Ecological interactions are complex networks, but have typically been studied in a pairwise fashion. Examining how third-party species can modify the outcome of pairwise interactions may allow us to better predict their outcomes in realistic systems. For instance, arbuscular mycorrhizal fungi (AMF) can affect plant interactions with other organisms, including below-ground herbivores, but the mechanisms underlying these effects remain unclear. Here, we use a comparative, phylogenetically controlled approach to test the relative importance of mycorrhizal colonization and plant chemical defences (cardenolides) in predicting plant survival and the abundance of a generalist below-ground herbivore across 14 species of milkweeds (Asclepias spp.). Plants were inoculated with a mixture of four generalist AMF species or left uninoculated. After 1month, larvae of Bradysia sp. (Diptera: Sciaridae), a generalist below-ground herbivore, colonized plant roots. We performed phylogenetically controlled analyses to assess the influence of AMF colonization and toxic cardenolides on plant growth, mortality and infestation by fungus gnats. Overall, plants inoculated with AMF exhibited greater survival than did uninoculated plants. Additionally, surviving inoculated plants had lower numbers of larvae in their roots and fewer non-AM fungi than surviving uninoculated plants. In phylogenetic controlled regressions, gnat density in roots was better predicted by the extent of root colonized by AMF than by root cardenolide concentration. Taken as a whole, AMF modify the effect of below-ground herbivores on plants in a species-specific manner, independent of changes in chemical defence. This study adds to the growing body of literature demonstrating that mycorrhizal fungi may improve plant fitness by conferring protection against antagonists, rather than growth benefits. In addition, we advocate using comparative analyses to disentangle the roles of shared history and ecology in shaping trait expression and to better predict the outcomes of complex multitrophic interactions.
Resumo:
Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.