986 resultados para photoperiod-sensitive genie male-sterile mutant


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microorganisms express multidrug resistance pumps (MDRs) that can confound antibiotic discovery. We propose the use of mutants deficient in MDRs to overcome this problem. Sensitivity to quinolones and to amphipathic cations (norfloxacin, benzalkonium chloride, cetrimide, pentamidine, etc.) was increased 5- to 30-fold in a Staphylococcus aureus mutant with a disrupted chromosomal copy of the NorA MDR. NorA was required both for increased sensitivity to drugs in the presence of an MDR inhibitor and for increased rate of cation efflux. This requirement suggests that NorA is the major MDR protecting S. aureus from the antimicrobials studied. A 15- to 60-fold increase in sensitivity to antimicrobials also was observed in wild-type cells at an alkaline pH that favors accumulation of cations and weak bases. This effect was synergistic with a norA mutation, resulting in an increase up to 1,000-fold in sensitivity to antimicrobials. The usefulness of applying MDR mutants for natural product screening was demonstrated further by increased sensitivity of the norA− strain to plant alkaloid antimicrobials, which might be natural MDR substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In eukaryotic cells, DNA polymerase β (polβ) carries out base-excision repair (BER) required for DNA maintenance, replication, recombination, and drug resistance. A specific deletion in one allele in the coding sequence of the polβ gene occurs in colorectal and breast carcinomas. The 87-bp deleted region encodes amino acid residues 208–236 in the catalytic domain of the enzyme. Here, we report evidence for expression of the wild-type (WT) and the truncated polβ proteins in colorectal tumors. To elucidate the potential functional consequences of polβ truncation, stable HeLa cell lines were established from cloned WT and variant polβΔ208–236. Cells expressing the variant protein exhibited substantially decreased BER activity. To test our hypothesis that truncated polβ may disrupt the function of the WT enzyme, we stably transfected mouse embryonic fibroblast 16.3 cells with polβΔ208–236 cDNA. Reverse transcription–PCR and Western blot analyses showed that the new cell line, 16.3ΔP, expresses the WT and the truncated polβ mRNA and proteins. BER and binding activities were undetectable in these cells. Furthermore, in vivo the 16.3ΔP cells were more sensitive to N-methyl-N′-nitro-N-nitrosoguanidine than the 16.3 cells. On adding increasing amounts of 16.3ΔP protein extracts, the BER and DNA binding activities of extracts of the parent 16.3 cell line progressively declined. These results strongly suggest that truncated polβ acts as a dominant negative mutant. The defective polβ may facilitate accumulation of mutations, leading to the expression of a mutator phenotype in tumor cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stimulation of inhibitory neurotransmitter receptors, such as γ-aminobutyric acid type B (GABAB) receptors, activates G protein-gated inwardly rectifying K+ channels (GIRK) which, in turn, influence membrane excitability. Seizure activity has been reported in a Girk2 null mutant mouse lacking GIRK2 channels but showing normal cerebellar development as well as in the weaver mouse, which has mutated GIRK2 channels and shows abnormal development. To understand how the function of GIRK2 channels differs in these two mutant mice, we compared the G protein-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from Girk2 null mutant and weaver mutant mice with those from wild-type mice. Activation of GABAB receptors in wild-type granule cells induced an inwardly rectifying K+ current, which was sensitive to pertussis toxin and inhibited by external Ba2+ ions. The amplitude of the GABAB receptor-activated current was severely attenuated in granule cells isolated from both weaver and Girk2 null mutant mice. By contrast, the G protein-gated inwardly rectifying current and possibly the agonist-independent basal current appeared to be less selective for K+ ions in weaver but not Girk2 null mutant granule cells. Our results support the hypothesis that a nonselective current leads to the weaver phenotype. The loss of GABAB receptor-activated GIRK current appears coincident with the absence of GIRK2 channel protein and the reduction of GIRK1 channel protein in the Girk2 null mutant mouse, suggesting that GABAB receptors couple to heteromultimers composed of GIRK1 and GIRK2 channel subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potassium (K+) nutrition and salt tolerance are key factors controlling plant productivity. However, the mechanisms by which plants regulate K+ nutrition and salt tolerance are poorly understood. We report here the identification of an Arabidopsis thaliana mutant, sos3 (salt-overly-sensitive 3), which is hypersensitive to Na+ and Li+ stresses. The mutation is recessive and is in a nuclear gene that maps to chromosome V. The sos3 mutation also renders the plant unable to grow on low K+. Surprisingly, increased extracellular Ca2+ suppresses the growth defect of sos3 plants on low K+ or 50 mM NaCl. In contrast, high concentrations of external Ca2+ do not rescue the growth of the salt-hypersensitive sos1 mutant on low K+ or 50 mM NaCl. Under NaCl stress, sos3 seedlings accumulated more Na+ and less K+ than the wild type. Increased external Ca2+ improved K+/Na+ selectivity of both sos3 and wild-type plants. However, this Ca2+ effect in sos3 is more than twice as much as that in the wild type. In addition to defining the first plant mutant with an altered calcium response, these results demonstrate that the SOS3 locus is essential for K+ nutrition, K+/Na+ selectivity, and salt tolerance in higher plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have screened for temperature-sensitive (ts) fission yeast mutants with altered polarity (alp1–15). Genetic analysis indicates that alp2 is allelic to atb2 (one of two α-tubulin genes) and alp12 to nda3 (the single β-tubulin gene). atb2+ is nonessential, and the ts atb2 mutations we have isolated are dominant as expected. We sequenced two alleles of ts atb2 and one allele of ts nda3. In the ts atb2 mutants, the mutated residues (G246D and C356Y) are found at the longitudinal interface between α/β-heterodimers, whereas in ts nda3 the mutated residue (Y422H) is situated in the domain located on the outer surface of the microtubule. The ts nda3 mutant is highly sensitive to altered gene dosage of atb2+; overexpression of atb2+ lowers the restrictive temperature, and, conversely, deletion rescues ts. Phenotypic analysis shows that contrary to undergoing mitotic arrest with high viability via the spindle assembly checkpoint as expected, ts nda3 mutants execute cytokinesis and septation and lose viability. Therefore, it appears that the ts nda3 mutant becomes temperature lethal because of irreversible progression through the cell cycle in the absence of activating the spindle assembly checkpoint pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many effectors of microtubule assembly in vitro enhance the polymerization of subunits. However, several Saccharomyces cerevisiae genes that affect cellular microtubule-dependent processes appear to act at other steps in assembly and to affect polymerization only indirectly. Here we use a mutant α-tubulin to probe cellular regulation of microtubule assembly. tub1-724 mutant cells arrest at low temperature with no assembled microtubules. The results of several assays reported here demonstrate that the heterodimer formed between Tub1-724p and β-tubulin is less stable than wild-type heterodimer. The unstable heterodimer explains several conditional phenotypes conferred by the mutation. These include the lethality of tub1-724 haploid cells when the β-tubulin–binding protein Rbl2p is either overexpressed or absent. It also explains why the TUB1/tub1-724 heterozygotes are cold sensitive for growth and why overexpression of Rbl2p rescues that conditional lethality. Both haploid and heterozygous tub1-724 cells are inviable when another microtubule effector, PAC2, is overexpressed. These effects are explained by the ability of Pac2p to bind α-tubulin, a complex we demonstrate directly. The results suggest that tubulin-binding proteins can participate in equilibria between the heterodimer and its components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arp2/3 complex is an essential component of the yeast actin cytoskeleton that localizes to cortical actin patches. We have isolated and characterized a temperature-sensitive mutant of Schizosaccharomyces pombe arp2 that displays a defect in cortical actin patch distribution. The arp2+ gene encodes an essential actin-related protein that colocalizes with actin at the cortical actin patch. Sucrose gradient analysis of the Arp2/3 complex in the arp2-1 mutant indicated that the Arp2p and Arc18p subunits are specifically lost from the complex at restrictive temperature. These results are consistent with immunolocalization studies of the mutant that show that Arp2-1p is diffusely localized in the cytoplasm at restrictive temperature. Interestingly, Arp3p remains localized to the cortical actin patch under the same restrictive conditions, leading to the hypothesis that loss of Arp2p from the actin patch affects patch motility but does not severely compromise its architecture. Analysis of the mutant Arp2 protein demonstrated defects in ATP and Arp3p binding, suggesting a possible model for disruption of the complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synaptotagmin (Syt) IV is a synaptic vesicle protein. Syt IV expression is induced in the rat hippocampus after systemic kainic acid treatment. To examine the functional role of this protein in vivo, we derived Syt IV null [Syt IV(−/−)] mutant mice. Studies with the rotorod revealed that the Syt IV mutants have impaired motor coordination, a result consistent with constitutive Syt IV expression in the cerebellum. Because Syt IV is thought to modulate synaptic function, we also have examined Syt IV mutant mice in learning and memory tests. Our studies show that the Syt IV mutation disrupts contextual fear conditioning, a learning task sensitive to hippocampal and amygdala lesions. In contrast, cued fear conditioning is normal in the Syt IV mutants, suggesting that this mutation did not disrupt amygdala function. Conditioned taste aversion, which also depends on the amygdala, is normal in the Syt IV mutants. Consistent with the idea that the Syt IV mutation preferentially affects hippocampal function, Syt IV mutant mice also display impaired social transmission of food preference. These studies demonstrate that Syt IV is critical for brain function and suggest that the Syt IV mutation affects hippocampal-dependent learning and memory, as well as motor coordination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inwardly rectifying potassium (K+) channels gated by G proteins (Kir3.x family) are widely distributed in neuronal, atrial, and endocrine tissues and play key roles in generating late inhibitory postsynaptic potentials, slowing the heart rate and modulating hormone release. They are directly activated by Gβγ subunits released from G protein heterotrimers of the Gi/o family upon appropriate receptor stimulation. Here we examine the role of isoforms of pertussis toxin (PTx)-sensitive G protein α subunits (Giα1–3 and GoαA) in mediating coupling between various receptor systems (A1, α2A, D2S, M4, GABAB1a+2, and GABAB1b+2) and the cloned counterpart of the neuronal channel (Kir3.1+3.2A). The expression of mutant PTx-resistant Gi/oα subunits in PTx-treated HEK293 cells stably expressing Kir3.1+3.2A allows us to selectively investigate that coupling. We find that, for those receptors (A1, α2A) known to interact with all isoforms, Giα1–3 and GoαA can all support a significant degree of coupling to Kir3.1+3.2A. The M4 receptor appears to preferentially couple to Giα2 while another group of receptors (D2S, GABAB1a+2, GABAB1b+2) activates the channel predominantly through Gβγ liberated from GoA heterotrimers. Interestingly, we have also found a distinct difference in G protein coupling between the two splice variants of GABAB1. Our data reveal selective pathways of receptor activation through different Gi/oα isoforms for stimulation of the G protein-gated inwardly rectifying K+ channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The epithelial amiloride-sensitive sodium channel (ENaC) controls transepithelial Na+ movement in Na+-transporting epithelia and is associated with Liddle syndrome, an autosomal dominant form of salt-sensitive hypertension. Detailed analysis of ENaC channel properties and the functional consequences of mutations causing Liddle syndrome has been, so far, limited by lack of a method allowing specific and quantitative detection of cell-surface-expressed ENaC. We have developed a quantitative assay based on the binding of 125I-labeled M2 anti-FLAG monoclonal antibody (M2Ab*) directed against a FLAG reporter epitope introduced in the extracellular loop of each of the α, β, and γ ENaC subunits. Insertion of the FLAG epitope into ENaC sequences did not change its functional and pharmacological properties. The binding specificity and affinity (Kd = 3 nM) allowed us to correlate in individual Xenopus oocytes the macroscopic amiloride-sensitive sodium current (INa) with the number of ENaC wild-type and mutant subunits expressed at the cell surface. These experiments demonstrate that: (i) only heteromultimeric channels made of α, β, and γ ENaC subunits are maximally and efficiently expressed at the cell surface; (ii) the overall ENaC open probability is one order of magnitude lower than previously observed in single-channel recordings; (iii) the mutation causing Liddle syndrome (β R564stop) enhances channel activity by two mechanisms, i.e., by increasing ENaC cell surface expression and by changing channel open probability. This quantitative approach provides new insights on the molecular mechanisms underlying one form of salt-sensitive hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several groups have attempted to develop gene therapy strategies to treat cancer via introduction of the wild-type (wt) p53 cDNA into cancer cells. Unfortunately, these approaches do not result in regulated expression of the p53 gene and do not reduce expression of the mutant p53 that is overexpressed in cancerous cells. These shortcomings may greatly limit the utility of this gene replacement approach. We describe an alternative strategy with trans-splicing ribozymes that can simultaneously reduce mutant p53 expression and restore wt p53 activity in various human cancers. The ribozyme accomplished such conversion by repairing defective p53 mRNAs with high fidelity and specificity. The corrected transcripts were translated to produce functional p53 that can transactivate p53-responsive promoters and down-modulate expression of the multidrug resistance (MDR1) gene promoter. The level of wt p53 activity generated was significant, resulting in a 23-fold induction of a p53-responsive promoter and a 3-fold reduction in MDR1 promoter expression in transfected cancer cells. Once efficient delivery systems are developed, this strategy should prove useful for making human cancers more responsive to p53 activity and more sensitive to chemotherapeutic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GSK3/shaggy-like genes encode kinases that are involved in a variety of biological processes. By functional complementation of the yeast calcineurin mutant strain DHT22-1a with a NaCl stress-sensitive phenotype, we isolated the Arabidopsis cDNA AtGSK1, which encodes a GSK3/shaggy-like protein kinase. AtGSK1 rescued the yeast calcineurin mutant cells from the effects of high NaCl. Also, the AtGSK1 gene turned on the transcription of the NaCl stress-inducible PMR2A gene in the calcineurin mutant cells under NaCl stress. To further define the role of AtGSK1 in the yeast cells we introduced a deletion mutation at the MCK1 gene, a yeast homolog of GSK3, and examined the phenotype of the mutant. The mck1 mutant exhibited a NaCl stress-sensitive phenotype that was rescued by AtGSK1. Also, constitutive expression of MCK1 complemented the NaCl-sensitive phenotype of the calcineurin mutants. Therefore, these results suggest that Mck1p is involved in the NaCl stress signaling in yeast and that AtGSK1 may functionally replace Mck1p in the NaCl stress response in the calcineurin mutant. To investigate the biological function of AtGSK1 in Arabidopsis we examined the expression of AtGSK1. Northern-blot analysis revealed that the expression is differentially regulated in various tissues with a high level expression in flower tissues. In addition, the AtGSK1 expression was induced by NaCl and exogenously applied ABA but not by KCl. Taken together, these results suggest that AtGSK1 is involved in the osmotic stress response in Arabidopsis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Caenorhabditis elegans maternal-effect sterile genes, mes-2, mes-3, mes-4, and mes-6, encode nuclear proteins that are essential for germ-line development. They are thought to be involved in a common process because their mutant phenotypes are similar. MES-2 and MES-6 are homologs of Enhancer of zeste and extra sex combs, both members of the Polycomb group of chromatin regulators in insects and vertebrates. MES-3 is a novel protein, and MES-4 is a SET-domain protein. To investigate whether the MES proteins interact and likely function as a complex, we performed biochemical analyses on C. elegans embryo extracts. Results of immunoprecipitation experiments indicate that MES-2, MES-3, and MES-6 are associated in a complex and that MES-4 is not associated with this complex. Based on in vitro binding assays, MES-2 and MES-6 interact directly, via the amino terminal portion of MES-2. Sucrose density gradient fractionation and gel filtration chromatography were performed to determine the Stokes radius and sedimentation coefficient of the MES-2/MES-3/MES-6 complex. Based on those two values, we estimate that the molecular mass of the complex is ≈255 kDa, close to the sum of the three known components. Our results suggest that the two C. elegans Polycomb group homologs (MES-2 and MES-6) associate with a novel partner (MES-3) to regulate germ-line development in C. elegans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertension is a leading cause of cardiovascular, cerebral, and renal disease morbidity and mortality. Here we show that disruption of the Cyp 4a14 gene causes hypertension, which is, like most human hypertension, more severe in males. Male Cyp 4a14 (−/−) mice show increases in plasma androgens, kidney Cyp 4a12 expression, and the formation of prohypertensive 20-hydroxyarachidonate. Castration normalizes the blood pressure of Cyp 4a14 (−/−) mice and minimizes Cyp 4a12 expression and arachidonate ω-hydroxylation. Androgen replacement restores hypertensive phenotype, Cyp 4a12 expression, and 20-hydroxy-arachidonate formation. We conclude that the androgen-mediated regulation of Cyp 4a arachidonate monooxygenases is an important component of the renal mechanisms that control systemic blood pressures. These results provide direct evidence for a role of Cyp 4a isoforms in cardiovascular physiology, establish Cyp 4a14 (−/−) mice as a monogenic model for the study of cause/effect relationships between blood pressure, sex hormones, and P450 ω-hydroxylases, and suggest the human CYP 4A homologues as candidate genes for the analysis of the genetic and molecular basis of human hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) protein has the ability to function as both a chloride channel and a channel regulator. The loss of these functions explains many of the manifestations of the cystic fibrosis disease (CF), including lung and pancreatic failure, meconium ileus, and male infertility. CFTR has previously been implicated in the cell regulatory volume decrease (RVD) response after hypotonic shocks in murine small intestine crypts, an effect associated to the dysfunction of an unknown swelling-activated potassium conductance. In the present study, we investigated the RVD response in human tracheal CF epithelium and the nature of the volume-sensitive potassium channel affected. Neither the human tracheal cell line CFT1, expressing the mutant CFTR-ΔF508 gene, nor the isogenic vector control line CFT1-LC3, engineered to express the βgal gene, showed RVD. On the other hand, the cell line CFT1-LCFSN, engineered to express the wild-type CFTR gene, presented a full RVD. Patch-clamp studies of swelling-activated potassium currents in the three cell lines revealed that all of them possess a potassium current with the biophysical and pharmacological fingerprints of the intermediate conductance Ca2+-dependent potassium channel (IK, also known as KCNN4). However, only CFT1-LCFSN cells showed an increase in IK currents in response to hypotonic challenges. Although the identification of the molecular mechanism relating CFTR to the hIK channel remains to be solved, these data offer new evidence on the complex integration of CFTR in the cells where it is expressed.