965 resultados para phospholipid transfer protein
Resumo:
ABSTRACT : BACKGROUND : Diets that restrict carbohydrate (CHO) have proven to be a successful dietary treatment of obesity for many people, but the degree of weight loss varies across individuals. The extent to which genetic factors associate with the magnitude of weight loss induced by CHO restriction is unknown. We examined associations among polymorphisms in candidate genes and weight loss in order to understand the physiological factors influencing body weight responses to CHO restriction. METHODS : We screened for genetic associations with weight loss in 86 healthy adults who were instructed to restrict CHO to a level that induced a small level of ketosis (CHO ~10% of total energy). A total of 27 single nucleotide polymorphisms (SNPs) were selected from 15 candidate genes involved in fat digestion/metabolism, intracellular glucose metabolism, lipoprotein remodeling, and appetite regulation. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail. RESULTS : Mean weight loss was 6.4 kg. SNPs in the gastric lipase (LIPF), hepatic glycogen synthase (GYS2), cholesteryl ester transfer protein (CETP) and galanin (GAL) genes were significantly associated with weight loss. CONCLUSION : A strong association between weight loss induced by dietary CHO restriction and variability in genes regulating fat digestion, hepatic glucose metabolism, intravascular lipoprotein remodeling, and appetite were detected. These discoveries could provide clues to important physiologic adaptations underlying the body mass response to CHO restriction.
Resumo:
Numerous animal models have been used to study diet effects on cholesterol and lipoprotein metabolism. However, most of those models differ from humans in the plasma distribution of cholesterol and in the processing of lipoproteins in the plasma compartment. Although transgenic or knock-out mice have been used to study a specific pathway involved in cholesterol metabolism, these data are of limited use because other metabolic pathways and responses to interventions may differ from the human condition.Carbohydrate restricted diets have been shown to reduce plasma triglycerides, increase HDL cholesterol and promote the formation of larger, less atherogenic LDL. However, the mechanisms behind these responses and the relation to atherosclerotic events in the aorta have not been explored in detail due to the lack of an appropriate animal model. Guinea pigs carry the majority of the cholesterol in LDL and possess cholesterol ester transfer protein and lipoprotein lipase activities, which results in reverse cholesterol transport and delipidation cascades equivalent to the human situation. Further, carbohydrate restriction has been shown to alter the distribution of LDL subfractions, to decrease cholesterol accumulation in aortas and to decrease aortic cytokine expression. It is the purpose of this review to discuss the use of guinea pigs as useful models to evaluate diet effects on lipoprotein metabolism, atherosclerosis and inflammation with an emphasis on carbohydrate restricted diets.
Resumo:
La prevalencia de las alergias está aumentando desde mediados del siglo XX, y se estima que actualmente afectan a alrededor del 2-8 % de la población, pero las causas de este aumento aún no están claras. Encontrar el origen del mecanismo por el cual una proteína inofensiva se convierte en capaz de inducir una respuesta alérgica es de vital importancia para prevenir y tratar estas enfermedades. Aunque la caracterización de alérgenos relevantes ha ayudado a mejorar el manejo clínico y a aclarar los mecanismos básicos de las reacciones alérgicas, todavía queda un largo camino para establecer el origen de la alergenicidad y reactividad cruzada. El objetivo de esta tesis ha sido caracterizar las bases moleculares de la alergenicidad tomando como modelo dos familias de panalergenos (proteínas de transferencia de lípidos –LTPs- y taumatinas –TLPs-) y estudiando los mecanismos que median la sensibilización y la reactividad cruzada para mejorar tanto el diagnóstico como el tratamiento de la alergia. Para ello, se llevaron a cabo dos estrategias: estudiar la reactividad cruzada de miembros de familias de panalérgenos; y estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas. Para estudiar la reactividad cruzada entre miembros de la misma familia de proteínas, se seleccionaron LTPs y TLPs, descritas como alergenos, tomando como modelo la alergia a frutas. Por otra parte, se estudiaron los perfiles de sensibilización a alérgenos de trigo relacionados con el asma del panadero, la enfermedad ocupacional más relevante de origen alérgico. Estos estudios se llevaron a cabo estandarizando ensayos tipo microarrays con alérgenos y analizando los resultados por la teoría de grafos. En relación al estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas, se llevaron a cabo estudios sobre la interacción de los alérgenos alimentarios con células del sistema inmune humano y murino y el epitelio de las mucosas, analizando la importancia de moléculas co-transportadas con los alérgenos en el desarrollo de una respuesta Th2. Para ello, Pru p 3(LTP y alérgeno principal del melocotón) se selección como modelo para llevarlo a cabo. Por otra parte, se analizó el papel de moléculas activadoras del sistema inmune producidas por patógenos en la inducción de alergias alimentarias seleccionando el modelo kiwi-alternaria, y el papel de Alt a 1, alérgeno mayor de dicho hongo, en la sensibilización a Act d 2, alérgeno mayor de kiwi. En resumen, el presente trabajo presenta una investigación innovadora aportando resultados de gran utilidad tanto para la mejora del diagnóstico como para nuevas investigaciones sobre la alergia y el esclarecimiento final de los mecanismos que caracterizan esta enfermedad. ABSTRACT Allergies are increasing their prevalence from mid twentieth century, and they are currently estimated to affect around 2-8% of the population but the underlying causes of this increase remain still elusive. The understanding of the mechanism by which a harmless protein becomes capable of inducing an allergic response provides us the basis to prevent and treat these diseases. Although the characterization of relevant allergens has led to improved clinical management and has helped to clarify the basic mechanisms of allergic reactions, it seems justified in aspiring to molecularly dissecting these allergens to establish the structural basis of their allergenicity and cross-reactivity. The aim of this thesis was to characterize the molecular basis of the allergenicity of model proteins belonging to different families (Lipid Transfer Proteins –LTPs-, and Thaumatin-like Proteins –TLPs-) in order to identify mechanisms that mediate sensitization and cross reactivity for developing new strategies in the management of allergy, both diagnosis and treatment, in the near future. With this purpose, two strategies have been conducted: studies of cross-reactivity among panallergen families and molecular studies of the contribution of cofactors in the induction of the allergic response by these panallergens. Following the first strategy, we studied the cross-reactivity among members of two plant panallergens (LTPs , Lipid Transfer Proteins , and TLPs , Thaumatin-like Proteins) using the peach allergy as a model. Similarly, we characterized the sensitization profiles to wheat allergens in baker's asthma development, the most relevant occupational disease. These studies were performed using allergen microarrays and the graph theory for analyzing the results. Regarding the second approach, we analyzed the interaction of plant allergens with immune and epithelial cells. To perform these studies , we examined the importance of ligands and co-transported molecules of plant allergens in the development of Th2 responses. To this end, Pru p 3, nsLTP (non-specific Lipid Transfer Protein) and peach major allergen, was selected as a model to investigate its interaction with cells of the human and murine immune systems as well as with the intestinal epithelium and the contribution of its ligand in inducing an allergic response was studied. Moreover, we analyzed the role of pathogen associated molecules in the induction of food allergy. For that, we selected the kiwi- alternaria system as a model and the role of Alt a 1 , major allergen of the fungus, in the development of Act d 2-sensitization was studied. In summary, this work presents an innovative research providing useful results for improving diagnosis and leading to further research on allergy and the final clarification of the mechanisms that characterize this disease.
Resumo:
Grain-induced asthma is a frequent occupational allergic disease mainly caused by inhalation of cereal flour or powder. The main professions affected are bakers, confectioners, pastry factory workers, millers, farmers, and cereal handlers. This disorder is usually due to an IgE-mediated allergic response to inhalation of cereal flour proteins. The major causative allergens of grain-related asthma are proteins derived from wheat, rye and barley flour, although baking additives, such as fungal α-amylase are also important. This review deals with the current diagnosis and treatment of grain-induced asthma, emphasizing the role of cereal allergens as molecular tools to enhance diagnosis and management of this disorder. Asthma-like symptoms caused by endotoxin exposure among grain workers are beyond the scope of this review. Progress is being made in the characterization of grain and bakery allergens, particularly cereal-derived allergens, as well as in the standardization of allergy tests. Salt-soluble proteins (albumins plus globulins), particularly members of the α-amylase/trypsin inhibitor family, thioredoxins, peroxidase, lipid transfer protein and other soluble enzymes show the strongest IgE reactivities in wheat flour. In addition, prolamins (not extractable by salt solutions) have also been claimed as potential allergens. However, the large variability of IgE-binding patterns of cereal proteins among patients with grain-induced asthma, together with the great differences in the concentrations of potential allergens observed in commercial cereal extracts used for diagnosis, highlight the necessity to standardize and improve the diagnostic tools. Removal from exposure to the offending agents is the cornerstone of the management of grain-induced asthma. The availability of purified allergens should be very helpful for a more refined diagnosis, and new immunomodulatory treatments, including allergen immunotherapy and biological drugs, should aid in the management of patients with this disorder.
Resumo:
Background: Component-based diagnosis on multiplex platforms is widely used in food allergy but its clinical performance has not been evaluated in nut allergy. Objective: To assess the diagnostic performance of a commercial protein microarray in the determination of specific IgE (sIgE) in peanut, hazelnut, and walnut allergy. Methods: sIgE was measured in 36 peanut-allergic, 36 hazelnut-allergic, and 44 walnut-allergic patients by ISAC 112, and subsequently, sIgE against available components was determined by ImmunoCAP in patients with negative ISAC results. ImmunoCAP was also used to measure sIgE to Ara h 9, Cor a 8, and Jug r 3 in a subgroup of lipid transfer protein (LTP)-sensitized nut-allergic patients (positive skin prick test to LTP-enriched extract). sIgE levels by ImmunoCAP were compared with ISAC ranges. Results: Most peanut-, hazelnut-, and walnut-allergic patients were sensitized to the corresponding nut LTP (Ara h 9, 66.7%; Cor a 8, 80.5%; Jug r 3, 84% respectively). However, ISAC did not detect sIgE in 33.3% of peanut-allergic patients, 13.9% of hazelnut-allergic patients, or 13.6% of walnut-allergic patients. sIgE determination by ImmunoCAP detected sensitization to Ara h 9, Cor a 8, and Jug r 3 in, respectively, 61.5% of peanut-allergic patients, 60% of hazelnut-allergic patients, and 88.3% of walnut-allergic patients with negative ISAC results. In the subgroup of peach LTP?sensitized patients, Ara h 9 sIgE was detected in more cases by ImmunoCAP than by ISAC (94.4% vs 72.2%, P<.05). Similar rates of Cor a 8 and Jug r 3 sensitization were detected by both techniques. Conclusions: The diagnostic performance of ISAC was adequate for hazelnut and walnut allergy but not for peanut allergy. sIgE sensitivity against Ara h 9 in ISAC needs to be improved.
Resumo:
Bakers are repeatedly exposed to wheat flour (WF) and may develop sensitization and occupational rhinoconjunctivitis and/or asthma to WF allergens.1 Several wheat proteins have been identified as causative allergens of occupational respiratory allergy in bakery workers.1 Testing of IgE reactivity in patients with different clinical profiles of wheat allergy (food allergy, wheat-dependent exercise-induced anaphylaxis, and baker's asthma) to salt-soluble and salt-insoluble protein fractions from WF revealed a high degree of heterogeneity in the recognized allergens. However, mainly salt-soluble proteins (albumins, globulins) seem to be associated with baker's asthma, and prolamins (gliadins, glutenins) with wheat-dependent exercise-induced anaphylaxis, whereas both protein fractions reacted to IgE from food-allergic patients.1 Notwithstanding, gliadins have also been incriminated as causative allergens in baker's asthma.2 We report on a 31-year-old woman who had been exposed to WF practically since birth because her family owned a bakery housed in the same home where they lived. She moved from this house when she was 25 years, but she continued working every day in the family bakery. In the last 8 years she had suffered from work-related nasal and ocular symptoms such as itching, watery eyes, sneezing, nasal stuffiness, and rhinorrhea. These symptoms markedly improved when away from work and worsened at work. In the last 5 years, she had also experienced dysphagia with frequent choking, especially when ingesting meats or cephalopods, which had partially improved with omeprazole therapy. Two years before referral to our clinic, she began to have dry cough and breathlessness, which she also attributed to her work environment. Upper and lower respiratory tract symptoms increased when sifting the WF and making the dough. The patient did not experience gastrointestinal symptoms with ingestion of cereal products. Skin prick test results were positive to grass (mean wheal, 6 mm), cypress (5 mm) and Russian thistle pollen (4 mm), WF (4 mm), and peach lipid transfer protein (6 mm) and were negative to rice flour, corn flour, profilin, mites, molds, and animal dander. Skin prick test with a homemade WF extract (10% wt/vol) was strongly positive (15 mm). Serologic tests yielded the following results: eosinophil cationic protein, 47 ?g/L; total serum IgE, 74 kU/L; specific IgE (ImmunoCAP; ThermoFisher, Uppsala, Sweden) to WF, 7.4 kU/L; barley flour, 1.24 kU/L; and corn, gluten, alpha-amylase, peach, and apple, less than 0.35 kU/L. Specific IgE binding to microarrayed purified WF allergens (WDAI-0.19, WDAI-0.53, WTAI-CM1, WTAI-CM2, WTAI-CM3, WTAI-CM16, WTAI-CM17, Tri a 14, profilin, ?-5-gliadin, Tri a Bd 36 and Tri a TLP, and gliadin and glutamine fractions) was assessed as described elsewhere.3 The patient's serum specifically recognized ?-5-gliadin and the gliadin fraction, and no IgE reactivity was observed to other wheat allergens. Spirometry revealed a forced vital capacity of 3.88 L (88%), an FEV1 of 3.04 L (87%), and FEV1/forced vital capacity of 83%. A methacholine inhalation test was performed following an abbreviated protocol,4 and the results were expressed as PD20 in cumulative dose (mg) of methacholine. Methacholine inhalation challenge test result was positive (0.24 mg cumulative dose) when she was working, and after a 3-month period away from work and with no visits to the bakery house, it gave a negative result. A chest x-ray was normal. Specific inhalation challenge test was carried out in the hospital laboratory by tipping WF from one tray to another for 15 minutes. Spirometry was performed at baseline and at 2, 5, 10, 15, 20, 30, 45, and 60 minutes after the challenge with WF. Peak expiratory flow was measured at baseline and then hourly over 24 hours (respecting sleeping time). A 12% fall in FEV1 was observed at 20 minutes and a 26% drop in peak expiratory flow at 9 hours after exposure to WF,
Resumo:
Food allergies constitute a public health issue, with a reported overall estimated prevalence of 6% in Europe1 and Rosacea as the main allergenic fruits among adults.2 The commercial microarray ImmunoCAP ISAC 112 (Thermofisher, Uppsala, Sweden) is a semiquantitative and reproducible in vitro diagnostic tool used for the determination of specific IgE (sIgE).3 However, its panel of allergens does not have the best accuracy when it comes to determining fruit allergies in the Mediterranean area: the inclusion of the thaumatinlike protein (TLP) Pru p 2 or the apple lipid transfer protein (LTP) Mal d 3 has been proposed to improve the diagnosis of peach4 and apple5 allergies, respectively, in the Mediterranean basin. We sought to determine the usefulness of a component-resolved microarray for the diagnosis of peach and apple allergies in the Mediterranean area.
Resumo:
The solution structure of the three-heme electron transfer protein cytochrome c7 from Desulfuromonas acetoxidans is reported. The determination of the structure is obtained through NMR spectroscopy on the fully oxidized, paramagnetic form. The richness of structural motifs and the presence of three prosthetic groups in a protein of 68 residues is discussed in comparison with the four-heme cytochromes c3 already characterized through x-ray crystallography. In particular, the orientation of the three hemes present in cytochrome c7 is similar to that of three out of four hemes of cytochromes c3. The reduction potentials of the individual hemes, which have been obtained through the sequence-specific assignment of the heme resonances, are discussed with respect to the properties of the protein matrix. This information is relevant for any attempt to understand the electron transfer pathway.
Resumo:
The Schizosaccharomyces pombe spo20-KC104 mutation was originally isolated in a screen for sporulation-deficient mutants, and the spo20-KC104 mutant exhibits temperature-sensitive growth. Herein, we report that S. pombe, spo20+ is essential for fission yeast cell viability and is constitutively expressed throughout the life cycle. We also demonstrate that the spo20+ gene product is structurally homologous to Saccharomyces cerevisiae Sec14, the major phosphatidylinositol transfer protein of budding yeast. This structural homology translates to a significant degree of functional relatedness because reciprocal complementation experiments demonstrate that each protein is able to fulfill the essential function of the other. Moreover, biochemical experiments show that, like Sec14, Spo20 is a phosphatidylinositol/phosphatidylcholine-transfer protein. That Spo20 is required for Golgi secretory function in vegetative cells is indicated by our demonstration that the spo20-KC104 mutant accumulates aberrant Golgi cisternae at restrictive temperatures. However, a second phenotype observed in Spo20-deficient fission yeast is arrest of cell division before completion of cell separation. Consistent with a direct role for Spo20 in controlling cell septation in vegetatively growing cells, localization experiments reveal that Spo20 preferentially localizes to the cell poles and to sites of septation of fission yeast cells. We also report that, when fission yeasts are challenged with nitrogen starvation, Spo20 translocates to the nucleus. This nuclear localization persists during conjugation and meiosis. On completion of meiosis, Spo20 translocates to forespore membranes, and it is the assembly of forespore membranes that is abnormal in spo20-KC104 cells. In such mutants, a considerable fraction of forming prespores fail to encapsulate the haploid nucleus. Our results indicate that Spo20 regulates the formation of specialized membrane structures in addition to its recognized role in regulating Golgi secretory function.
Resumo:
Tissues expressing mRNAs of three cold-induced genes, blt101, blt14, and blt4.9, and a control gene, elongation factor 1α, were identified in the crown and immature leaves of cultivated barley (Hordeum vulgare L. cv Igri). Hardiness and tissue damage were assessed. blt101 and blt4.9 mRNAs were not detected in control plants; blt14 was expressed in control plants but only in the inner layers of the crown cortex. blt101 was expressed in many tissues of cold-acclimated plants but most strongly in the vascular-transition zone of the crown; blt14 was expressed only in the inner layers of the cortex and in cell layers partly surrounding vascular bundles in the vascular-transition zone; expression of blt4.9, which codes for a nonspecific lipid-transfer protein, was confined to the epidermis of the leaf and to the epidermis of the older parts of the crown. None of the cold-induced genes was expressed in the tunica, although the control gene was most strongly expressed there. Thus, the molecular aspects of acclimation differed markedly between tissues. Damage in the vascular-transition zone of the crown correlated closely with plant survival. Therefore, the strong expression of blt101 and blt14 in this zone may indicate a direct role in freezing tolerance of the crown.
Resumo:
During ripening of grape (Vitis labruscana L. cv Concord) berries, abundance of several proteins increased, coordinately with hexoses, to the extent that these became the predominant proteins in the ovary. These proteins have been identified by N-terminal amino acid-sequence analysis and/or function to be a thaumatin-like protein (grape osmotin), a lipid-transfer protein, and a basic and an acidic chitinase. The basic chitinase and grape osmotin exhibited activities against the principal grape fungal pathogens Guignardia bidwellii and Botrytis cinerea based on in vitro growth assays. The growth-inhibiting activity of the antifungal proteins was substantial at levels comparable to those that accumulate in the ripening fruit, and these activities were enhanced by as much as 70% in the presence of 1 m glucose, a physiological hexose concentration in berries. The simultaneous accumulation of the antifungal proteins and sugars during berry ripening was correlated with the characteristic development of pathogen resistance that occurs in fruits during ripening. Taken together, accumulation of these proteins, in combination with sugars, appears to constitute a novel, developmentally regulated defense mechanism against phytopathogens in the maturing fruit.
Resumo:
High density lipoproteins (HDLs) play a role in two processes that include the amelioration of atheroma formation and the centripetal flow of cholesterol from the extrahepatic organs to the liver. This study tests the hypothesis that the flow of sterol from the peripheral organs to the liver is dependent upon circulating HDL concentrations. Transgenic C57BL/6 mice were used that expressed variable amounts of simian cholesteryl ester-transfer protein (CETP). The rate of centripetal cholesterol flux was quantitated as the sum of the rates of cholesterol synthesis and low density lipoprotein-cholesterol uptake in the extrahepatic tissues. Steady-state concentrations of cholesterol carried in HDL (HDL-C) varied from 59 to 15 mg/dl and those of apolipoprotein AI from 138 to 65 mg/dl between the control mice (CETPc) and those maximally expressing the transfer protein (CETP+). There was no difference in the size of the extrahepatic cholesterol pools in the CETPc and CETP+ animals. Similarly, the rates of cholesterol synthesis (83 and 80 mg/day per kg, respectively) and cholesterol carried in low density lipoprotein uptake (4 and 3 mg/day per kg, respectively) were virtually identical in the two groups. Thus, under circumstances where the steady-state concentration of HDL-C varied 4-fold, the centripetal flux of cholesterol from the peripheral organs to the liver was essentially constant at approximately 87 mg/day per kg. These studies demonstrate that neither the concentration of HDL-C or apolipoprotein AI nor the level of CETP activity dictates the magnitude of centripetal cholesterol flux from the extrahepatic organs to the liver, at least in the mouse.
Resumo:
Oxidoreductase enzymes catalyze single- or multi-electron reduction/oxidation reactions of small molecule inorganic or organic substrates, and they are integral to a wide variety of biological processes including respiration, energy production, biosynthesis, metabolism, and detoxification. All redox enzymes require a natural redox partner such as an electron-transfer protein ( e. g. cytochrome, ferredoxin, flavoprotein) or a small molecule cosubstrate ( e. g. NAD(P)H, dioxygen) to sustain catalysis, in effect to balance the substrate/product redox half-reaction. In principle, the natural electron-transfer partner may be replaced by an electrochemical working electrode. One of the great strengths of this approach is that the rate of catalysis ( equivalent to the observed electrochemical current) may be probed as a function of applied potential through linear sweep and cyclic voltammetry, and insight to the overall catalytic mechanism may be gained by a systematic electrochemical study coupled with theoretical analysis. In this review, the various approaches to enzyme electrochemistry will be discussed, including direct and indirect ( mediated) experiments, and a brief coverage of the theory relevant to these techniques will be presented. The importance of immobilizing enzymes on the electrode surface will be presented and the variety of ways that this may be done will be reviewed. The importance of chemical modification of the electrode surface in ensuring an environment conducive to a stable and active enzyme capable of functioning natively will be illustrated. Fundamental research into electrochemically driven enzyme catalysis has led to some remarkable practical applications. The glucose oxidase enzyme electrode is a spectacularly successful application of enzyme electrochemistry. Biosensors based on this technology are used worldwide by sufferers of diabetes to provide rapid and accurate analysis of blood glucose concentrations. Other applications of enzyme electrochemistry are in the sensing of macromolecular complexation events such as antigen - antibody binding and DNA hybridization. The review will include a selection of enzymes that have been successfully investigated by electrochemistry and, where appropriate, discuss their development towards practical biotechnological applications.
Resumo:
To investigate the hypothesis that the micronutrient ascorbic acid can modulate the functional genome, T cells (CCRF-HSB2) were treated with ascorbic acid (up to 150 μM) for up to 24 h. Protein expression changes were assessed by two-dimensional electrophoresis. Forty-one protein spots which showed greater than two-fold expression changes were subject to identification by matrix-assisted laser desorption ionisation time of flight MS. The confirmed protein identifications were clustered into five groups; proteins were associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of phosphatidylinositol transfer protein (promotes intracellular signalling) within 5 min of ascorbic acid treatment was confirmed by Western blotting. Together, these observations suggest that ascorbic acid modulates the T cell proteome in a time- and dose-dependent manner and identify molecular targets for study following antioxidant supplementation in vivo.
Resumo:
Human arythrocytes were used as a model system for an investigation of the mechanism of action of the antiproliferative drug Adriamycin. Erythrocytes were induced to undergo a change in morphology by elevation of intracellular calcium. It was revealed that the widely used media employed for the study of morphological change were unsuitable; a new incubation medium was developed so that cells were metabolically replete. In this medium echinocytosis took place both in a calcium concentration- and time-dependent manner. Pretreatment of erythrocytes with Adriamycin (10 M for 10 mins) protected the erythrocytes against calcium-induced echinocytosis at calcium concentrations < 150M. SDS-PAGE analysis of the cytoskeletal proteins prepared from erythrocytes revealed the calcium-induced proteolysis of two main cytoskeletal proteins: band 2:1 and band 4:1. Only the rate of the proteolysis of band 2.1 correlated with the onset of echinocytosis. Adriamycin inhibited the breakdown of band 2.1 even when the cells formed echinocytes; this raises doubts concerning the importance of band 2.1 in the maintenance of discocyte morphology. Adriamycin only marginally inhibited the purified calcium-activated thio protease (calpain). Calcium-loading of human erythrocytes increased the phosphorylation of several major cytoskeletal proteins including pp120, band 3, band 4.1 and band 4.9. The pattern of increase resembled that induced by 12-0-tetradecanoyl-phorbol-13-acetate. Pre-treatment with Adriamycin prior to calcium loading caused a general lowering of basal phosphorylation. Adriamycin had no effect on the activity of the calcium-activated phospholipid-dependent protein kinase (protein kinase C). A hypothesis is put forward that the morphological transition of erythrocytes might be dependent upon the activity of a contractile system.