967 resultados para phase-transfer catalysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Researches on two-phase flow and pool boiling heat transfer in microgravity, which included groundbased tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanism of hole charge transfer in DNA of various lengths and sequences is investigated based on a partially coherent tunneling theory (Zhang et al., J Chem Phys 117:4578, 2002), where the effects of phase-breaking in adenine-thymine and guanine-cytosine base pairs are treated on equal foot. This work aims at providing a self-consistent microscopic interpretation for rate experiments on various DNA systems. We will also clarify the condition under which the simple superexchange-mediated-hopping picture is valid, and make some comments on the further development of present theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a previous Letter [Opt. Lett. 33, 1171 (2008)], we proposed an improved logarithmic phase mask by making modifications to the original one designed by Sherif. However, further studies in another paper [Appl. Opt. 49, 229 (2010)] show that even when the Sherif mask and the improved one are optimized, their corresponding defocused modulation transfer functions (MTFs) are still not stable with respect to focus errors. So, by further modifying their phase profiles, we design another two logarithmic phase masks that exhibit more stable defocused MTF. However, with the defocus-induced phase effect considered, we find that the performance of the two masks proposed in this Letter is better than the Sherif mask, but worse than our previously proposed phase mask, according to the Hilbert space angle. (C) 2010 Optical Society of America

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wavefront coding can be used to extend the depth of field of incoherent imaging systems and is a powerful system-level technique. In order to assess the performance of a wavefront-coded imaging system, defocused optical transfer function (OTF) is the metric frequently used. Unfortunately, to the best of our knowledge, among all types of phase masks, it is usually difficult to obtain the analytical OTF except the cubic one. Although numerical computation seems good enough for performance evaluation, the approximate analytical OTF is still indispensable because it can reflect the relationship between mask parameters and system frequency response in a clearer way. Thus, a method is proposed to derive the approximate analytical OTF for two-dimensional rectangularly separable phase masks. The analytical results are well consistent with the direct numerical computations, but the proposed method can be accepted only from engineering point of view and needs rigorous proof in future. (c) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3485759]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemical behavior of pyridine distribution at the water/1,2-dichloroethane interface with variable phase volume ratios (r=V-0/V-W) was investigated by cyclic voltammetry. The system was composed of an aqueous droplet supported on a Ag/AgCl disk electrode covered with an organic solution or an organic droplet supported on a Ag/AgTPBCl disk electrode covered with an aqueous solution. In this way, a conventional three-electrode potentiostat can be used to study an ionizable compound transfer process at a liquid/liquid interface with a wide range of phase volume ratios (from 0.0004 to 1 and from 1 to 2500). Using this special cell we designed, only very small volumes of both phase were needed for r equal to unity, which is very useful for the investigation of the distribution of ionizable species at a biphasic system when the available amount of species is limited. The ionic partition diagrams were obtained for different phase volume ratios.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemical behavior of ionizable drugs (Amitriptyline, Diphenhydramine and Trihexyphenedyl) at the water/1,2-dichloroethane interface with the phase volume ratio (r = V-o/V-w) equal to 1 are investigated by cyclic voltammetry. The system is composed of an aqueous droplet supported at an Ag/AgCl disk electrode and it was covered with an organic solution. In this manner, a conventional three-electrode potentiostat can be used to study the ionizable drugs transfer process at a liquid/liquid interface. Physicochemical parameters such as the formal transfer potential, the Gibbs energy of transfer and the standard partition coefficients of the ionized forms of these drugs can be evaluated from cyclic voltammograms obtained. The obtained results have been summarized in ionic partition diagrams, which are a useful tool for predicting and interpreting the transfer mechanisms of ionizable drugs at the liquid/liquid interfaces and biological membranes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study of potassium ion transfer across a water \ 1,2-dichloroethane (W \ DCE) interface facilitated by dibenzo-18-crown-6 (DB18C6) with various phase volume ratio systems is presented. The key point was that a droplet of aqueous solution containing a redox couple, Fe(CN)(6)(3-)/Fe(CN)(6)(4-), with equal molar ratio, was first attached to a platinum electrode surface, and the resulting droplet electrode was then immersed into the organic solution containing a hydrophobic electrolyte to construct a platinum electrode/aqueous phase/organic phase system. The interfacial potential of the W \ DCE within the series could be externally controlled because the specific compositions in the aqueous droplet make the Pt electrode function like a reference electrode as long as the concentration ratio of Fe(CN)(6)(3-)/Fe(CN)(6)(4-) remains constant. In this way, a conventional three-electrode potentiostat can be used to study the ion transfer process at a liquid \ liquid (L \ L) interface facilitated by an ionophore with variable phase volume ratio (r = V-o/V-w). The effect of r on ion transfer and facilitated ion transfer was studied in detail experimentally. We also demonstrated that as low as 5 x 10(-8) M DB18C6 could be determined using this method due to the effect of the high phase volume ratio.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The energy transfer in a blend film of poly 3-(2-(5-chlorobenzotriazolo) ethyl) thiophene (PCSET) and polyvinylcarzole (PVK) was investigated. The UV-VIS and photoluminescence (PL) results suggest that the energy transfer from PVK to PCBET leads to the enhancement of PL emission of PCBET. The AFM and LMF results indicated that the domains of blend polymer film are of micro-meter size. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrotalcite-like compounds (HTLcs): CoMAlCO3-HTLcs (M=Cu2+, Ni2+, Mn2+, Cr3+, Fe3+), were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs and their calcined products were studied in the p-cresol oxidation, and the effects of the temperature of HTLcs calcination, the ratio of Co/Cu, different promoters, reaction temperatures and reaction times on reaction activities were investigated. It has been found that calcined HTLcs have higher activity than uncalcined samples and mechanical mixed oxides in this reaction. The best yield was obtained from the CoCuAlCO3-HTLc (Co/Cu/Al=3:1:1) calcined at 450 degrees C. A tentative reaction mechanism was also proposed. (C) 1998 Elsevier Science B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrotalcite-like compounds (HTLcs): (CuMAlCO3)-Al-II-HTLcs, where M-II=Co2+, Ni2+, Cu2+, Zn2+ and Fe2+, were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs was studied in the phenol hydroxylation by H2O2 in liquid phase; then the effects of the ratio of Cu/Al, reaction temperature, solvent and pH of medium were investigated. It has been found that the uncalcined HTLcs have higher activities than those of calcined samples in this reaction. The catalyst CuAlCO3-HTLcs having Cu/Al=3 efficiently oxidized phenol and gave high yields of the corresponding diphenols in appropriate reaction conditions. A tentative reaction mechanism is also proposed. (C) 1998 Elsevier Science B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A mediatorless horseradish peroxidase (HRP) enzyme electrode operated in nonaqueous media is constructed by cryohydrogel immobilization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gas phase partial oxidation of toluene over V/Ti oxide catalysts has been successfully performed in a microchannel reactor, which provides very good mass and heat transfer conditions. With the elimination of hot spots, which are known as the most negative factors for partial oxidation of hydrocarbons, steady and uniform reaction conditions can be achieved in the catalyst bed by using, the microreactor. Since the best performance of the catalysts might be exploited, the selectivity of partial oxidation products of toluene has remarkably increased compared to the traditional packed fixed-bed reactor, even without the bother of modifying the catalysts, diluting the reactants or catalysts with inert contents to avoid hot spots or improve the diffusion and mixing. Furthermore, in virtue of its inherent safety features, when using pure oxygen as oxidant, the reactions were handled safety within the explosion limits in the microreactor. With TiO2 carried V2O5 as catalysts, the total selectivity of benzaldehyde and benzoic acid reaches around 60%, and the toluene conversion is about 10%. The conversion can go up without violent decline of selectivity, unlike most fixed bed reactors. Space time yield of 3.12 kg h(-1) L-1 calculated on the basis of the channel volume has been achieved. The influence of operating conditions has been investigated in detail in the microreactor. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin film dielectrics based on titanium, zirconium or hafnium oxides are being introduced to increase the permittivity of insulating layers in transistors for micro/nanoelectronics and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, as it allows for high control of composition and thickness in thin, conformal films which can be deposited on substrates with high aspect-ratio features. The success of this method depends crucially on the chemical properties of the precursor molecules. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert by-products. In recent years, many different ALD precursors for metal oxides have been developed, but many of them suffer from low thermal stability. Much promise is shown by group 4 metal precursors that contain cyclopentadienyl (Cp = C5H5-xRx) ligands. One of the main advantages of Cp precursors is their thermal stability. In this work ab initio calculations were carried out at the level of density functional theory (DFT) on a range of heteroleptic metallocenes [M(Cp)4-n(L)n], M = Hf/Zr/Ti, L = Me and OMe, in order to find mechanistic reasons for their observed behaviour during ALD. Based on optimized monomer structures, reactivity is analyzed with respect to ligand elimination. The order in which different ligands are eliminated during ALD follows their energetics which was in agreement with experimental measurements. Titanocene-derived precursors, TiCp*(OMe)3, do not yield TiO2 films in atomic layer deposition (ALD) with water, while Ti(OMe)4 does. DFT was used to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)3 lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O (densification) during both of the ALD pulses. Blocking this step hindered further ALD reactions and for that reason no ALD growth is observed from TiCp*(OMe)3 and water. The thermal stability in the gas phase of Ti, Zr and Hf precursors that contain cyclopentadienyl ligands was also considered. The reaction that was found using DFT is an intramolecular α-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp2(CH3)2 increase down group 4 (M = Ti, Zr and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. The reverse reaction of α-hydrogen abstraction in ZrCp2Me2 is 1,2-addition reaction of a C-H bond to a Zr=C bond. The same mechanism is investigated to determine if it operates for 1,2 addition of the tBu C-H across Hf=N in a corresponding Hf dimer complex. The aim of this work is to understand orbital interactions, how bonds break and how new bonds form, and in what state hydrogen is transferred during the reaction. Calculations reveal two synchronous and concerted electron transfers within a four-membered cyclic transition state in the plane between the cyclopentadienyl rings, one π(M=X)-to-σ(M-C) involving metal d orbitals and the other σ(C-H)-to-σ(X-H) mediating the transfer of neutral H, where X = C or N. The reaction of the hafnium dimer complex with CO that was studied for the purpose of understanding C-H bond activation has another interesting application, namely the cleavage of an N-N bond and resulting N-C bond formation. Analysis of the orbital plots reveals repulsion between the occupied orbitals on CO and the N-N unit where CO approaches along the N-N axis. The repulsions along the N-N axis are minimized by instead forming an asymmetrical intermediate in which CO first coordinates to one Hf and then to N. This breaks the symmetry of the N-N unit and the resultant mixing of MOs allows σ(NN) to be polarized, localizing electrons on the more distant N. This allowed σ(CO) and π(CO) donation to N and back-donation of π*(Hf2N2) to CO. Improved understanding of the chemistry of metal complexes can be gained from atomic-scale modelling and this provides valuable information for the design of new ALD precursors. The information gained from the model decomposition pathway can be additionally used to understand the chemistry of molecules in the ALD process as well as in catalytic systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computational results for the intensive microwave heating of porous materials are presented in this work. A multi-phase porous media model has been developed to predict the heating mechanism. Combined finite difference time-domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent both on temperature and moisture content. The model was able to reflect the evolution of both temperature and moisture fields as well as energy penetration as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As part of a comprehensive effort to predict the development of caking in granular materials, a mathematical model is introduced to model simultaneous heat and moisture transfer with phase change in porous media when undergoing temperature oscillations/cycling. The resulting model partial differential equations were solved using finite-volume procedures in the context of the PHYSICA framework and then applied to the analysis of sugar in storage. The influence of temperature on absorption/desorption and diffusion coefficients is coupled into the transport equations. The temperature profile, the depth of penetration of the temperature oscillation into the bulk solid, and the solids moisture content distribution were first calculated, and these proved to be in good agreement with experimental data. Then, the influence of temperature oscillation on absolute humidity, moisture concentration, and moisture migration for different parameters and boundary conditions was examined. As expected, the results show that moisture near boundary regions responds faster than farther away from them with surface temperature changes. The moisture absorption and desorption in materials occurs mainly near boundary regions (where interactions with the environment are more pronounced). Small amounts of solids moisture content, driven by both temperature and vapour concentration gradients, migrate between boundary and center with oscillating temperature.