922 resultados para phase behavior
Resumo:
An order-order transition (OOT) in the sequence of a hexagonally arranged core-shell cylinder to a double-hexagonally arranged dot in polystyrene-block-poly(butadiene)-block-poly(2-vinylpyridine) (SBV) triblock copolymer thin films is reported to be induced upon exposure to a solvent vapor that: is strongly selective for the two end blocks. These two kinds of hexagonally arranged structures could form when the film thickness is 44, 3.23, and 223 nm. When the film thickness is decreased to 13 nm, the ordered structure is absent. The sizes of the cylinder structures formed with the same annealing time in films of different thickness are compared to address the effects of film thickness on the phase structure. The mechanism is analyzed from the total surface area of the blocks and the effective interaction parameter in the solvent vapor.
Resumo:
A series of binary SB blend samples with various overall volume fraction of PS (Phi(PS)) and different discrete distribution of the block length (denoted as d(PS) or d(PB)) were prepared by mixing various asymmetric poly(styrene)-block-poly(butadiene) (SB) block copolymers with a symmetric SB block copolymer. The influences of the external solvent field, composition, and the block length distribution on the morphologies of the blends in the thin films were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The experimental results revealed that after solvent annealing, the interface of the blend thin films depended mainly on the cooperative effects of the annealing solvent and the inherently interfacial curvature of the blends. Upon exposure to the saturated vapor of cyclohexane, which has preferential affinity for the PB block, a "threshold" of Phi(PS) (approximate 0.635-0.707) was found. Below such threshold, the influence of the annealing solvent played an important role on the interfacial curvature of the blend thin film.
Resumo:
Rhythmic growth of ring-banded spherulites in blends of liquid crystalline methoxy-poly(aryl ether ketone) (M-PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring-banded spherulites in the M-PAEK/PEEK blends is strongly dependent on the blend composition. In the M.-PAEK-rich blends, upon cooling, an unusual ring-banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M-PAEK/PEEK blend, ring-banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M-PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring-banded spherulite formation in the blends. In addition, the effects of M-PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed.
Resumo:
The activity and selectivity of the transition metal complexes formed from Ru, Rh, Pd and Ni with triphenylphosphine (TPP) have been investigated for hydrogenation of citral in supercritical carbon dioxide (scCO(2)). High activities are obtained with Ru/TPP and Pd/TPP catalysts, and the overall activity is in the order of Pd approximate to Ru > Rh > Ni. The Ru/TPP complex is highly selective to the formation of unsaturated alcohols of geraniol and nerol. In contrast, the Pd/TPP catalyst is more selective to partially saturated aldehydes of citronellal. Furthermore, the influence of several parameters such as CO2 and H-2 pressures, N-2 pressure and reaction time has been discussed. CO2 pressure has a significant impact on the product distribution, and the selectivity for geraniol and nerol can be enhanced from 27% to 75% with increasing CO2 pressure from 6 to 16 MPa, while the selectivity for citronellol decreases from 70% to 20%. Striking changes in the conversion and product distribution in scCO(2) could be interpreted with variations in the phase behavior and the molecular interaction between CO2 and the substrate in the gas phase and in the liquid phase.
Resumo:
Breakup process of polyamide 6 (PA6) in polypropylene (PP) matrix under shear flow was online studied by using a Linkam CSS 450 stage equipped with optical microscopy. Both tip streaming and fracture breakup modes of PA6 droplets were observed in this study. It was reported that the droplet would break up by tip streaming model when the radio of the droplet phase viscosity to the matrix phase viscosity (n(r) = n(d)/n(m)) is smaller than 0.1 (Taylor, Proc R Soc London A 1934, 146, 501; Grace, Chem Eng Commun 1982, 14, 225; Bartok and Mason, J Colloid Sci 1959, 14, 13; Rumscheidt and Mason, J Colloid Sci 1961, 16, 238; de Bruijn, Chem Eng Sci 1993, 48, 277). However, the tip streaming model was observed even when the viscosity ratio was much greater than 0.1 (n(r) = 1.9). In this study for the tip streaming mode, small droplets were ruptured from the tip of the mother droplet. On the other hand, the mother droplet was broken into two or more daughter droplets with one or several satellite droplets between them for the fracture mode. It was found that PA6 droplet was much elongated at first, and then broke up via tip streaming or fracture to form daughter droplets or small satellite droplets with the shape of fiber or ellipse.
Resumo:
Well-ordered nanostructured polymeric supramolecular thin films were fabricated from the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)(H+) and poly(methyl methacrylate)-dibenzo-18-crown-6-poly(methyl methacrylate) (PMCMA). A depression Of cylindrical nanodomains was formed by the block of P4VP(H+) and PMCMA associates surrounded by PS. The repulsive force aroused from the incompatibility between the block of P4VP(H+) and PMCMA was varied through changing the molecule weight (M-w) of PMCMA, the volume fraction of the block of P4VP(H+), and annealing the film at high temperature. Increasing the repulsive force led to a change of overall morphology from ordered nanoporous to featureless structures. The effects of solvent nature and evaporation rate on the film morphology were also investigated. Further evolution of surface morphologies from nanoporous to featureless to nanoporous structures was observed upon exposure to carbon bisulfide vapors for different treatment periods. The wettability of the film surface was changed from hydrophilicity to hydrophobicity due to the changes of the film surface microscopic composition.
Resumo:
We have systematically studied the thin film morphologies of asymmetric polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer subjected to solvent vapors of varying selectivity for the constituent blocks. Upon a short treatment in neutral or PS-selective vapor, the film exhibited a highly ordered array of hexagonally packed, cylindrical microdomains. In the case of PEO selective vapor annealing, such ordered cylindrical microdomains were not obtained. instead, fractal patterns on the microscale were observed and their growth processes investigated. Furthermore, hierarchical structures could be obtained if the fractal pattern was exposed to neutral or PS selective vapor.
Resumo:
The surface morphologies of poly(styrene-b-4vinylpyridine) (PS-b-P4VP) diblock copolymer and homopolystyrene (hPS) binary blend thin films were investigated by atomic force microscopy as a function of total volume fraction of PS (phi(PS)) in the mixture. It was found that when hPS was added into symmetric PS-b-P4VP diblock copolymers, the surface morphology of this diblock copolymer was changed to a certain degree. With phi(PS) increasing at first, hPS was solubilized into the corresponding domains of block copolymer and formed cylinders. Moreover, the more solubilized the hPS, the more cylinders exist. However, when the limit was reached, excessive hPS tended to separate from the domains independently instead of solubilizing into the corresponding domains any longer, that is, a macrophase separation occurred. A model describing transitions of these morphologies with an increase in phi(PS) is proposed. The effect of composition on the phase morphology of blend films when graphite is used as a substrate is also investigated.
Resumo:
We have investigated systematically the morphology of thin films spin-coated from solutions of a semicrystalline diblock copolymer, poly(L-lactic acid)-block-polystyrene (PLLA-b-PS), in solvents with varying selectivity. In neutral solvents (chloroform and tetrahydrofuran (THF)), a spinodal-like pattern was obtained and the pattern boundary was sharpened by diluting the solution. Meanwhile, loose spherical associates, together with larger aggregates composed of these associates by unimer bridges, formed partly due to crystallization of the PLLA blocks in relatively concentrated solutions. In slightly PS-selective solvent (e.g., benzene), both loose and compact spherical micelles were obtained, depending on the polymer concentration, coexisting with unimers. When enhancing the selectivity with mixed solvents, for example, mixing the neutral solvent and the slightly selective solvent with a highly PS-selective solvent, CS2, loose assemblies (nanorods in CS2/THF mixtures and polydisperse aggregates in CS2/benzene mixtures) and well-developed lamellar micelles were obtained.
Resumo:
Binary symmetric diblock copolymer blends, that is, low-molecular-weight poly(styrene-block-methyl methacrylate) (PS-b-PMMA) and high-molecular-weight poly(styrene-block-methacrylate) (PS-b-PMA), self-assemble on silicon substrates to form structures with highly ordered nanoholes in thin films. As a result of the chemically similar structure of the PMA and the PMMA block, the PMMA chain penetrates through the large PMA block that absorbs preferentially on the polar silicon substrate. This results in the formation of nanoholes in the PS continuous matrix.
Resumo:
Electrospray ionization tandem mass spectrometry (ESI-MSn) and the phase solubility method were used to characterize the gas-phase and solution-phase non-covalent complexes between rutin (R) and alpha-, beta- and gamma-cyclodextrins (CDs). The direct correlation between mass spectrometric results and solution-phase behavior is thus revealed. The order of the 1:1 association constants (K-c) of the complexes between R and the three CDs in solution calculated from solubility diagrams is in good agreement with the order of their relative peak intensities and relative collision-induced dissociation (CID) energies of the complexes under the same ESI-MSn condition in both the positive and negative ion modes. Not only the binding stoichiometry but also the relative stabilities and even binding sites of the CD-R complexes can be elucidated by ESI-MSn. The diagnostic fragmentation of CD-R complexes, with a significant contribution of covalent fragmentation of rutin leaving the quercetin (Q) moiety attached to the CDs, provides convincing evidence for the formation of inclusion complexes between R and CDs. The diagnostic fragment ions can be partly confirmed by the complexes between Q and CDs. The gas-phase stability order of the deprotonated CD-R complexes is beta-CD-R > alpha-CD-R > gamma-CD/R; beta-CD seems to bind R more strongly than the other CDs.
Resumo:
Submonolayer thin films of a three-ring bent-core (that is, banana-shaped) compound, m-bis(4-n-octyloxystyryl)benzene (m-OSB), were prepared by the vacuum-deposition method, and their morphologies, structures, and phase behavior were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The films have island shapes ranging from compact elliptic or circular patterns at low temperatures (below 40 degreesC) to branched patterns at high temperatures (above 60 degreesC). This shape evolution is contrary to the prediction based on the traditional diffusion-limited aggregation (DLA) theory. AFM observations revealed that two different mechanisms governed the film growth, in which the compact islands were formed via a dewetting-like behavior, while the branched islands diffusion-mediated. It is suggested m-OSB forms a two-dimensional, liquid crystal at the low-temperature substrate that is responsible for the unusual formation of compact islands. All of the monolayer islands are unstable and apt to transform to slender bilayer crystals at room temperature. This phase transition results from the peculiar molecular shape and packing of the bent-core molecules and is interpreted as escaping from macroscopic net polarization by the formation of an antiferroelectric alignment.
Resumo:
We report the morphology and phase behaviors of blend thin films containing two poly styrene-b-poly (methyl methacrylate) (PS-b-PMMA) diblock copolymers with different blending compositions induced by a selective solvent for the PMMA block, which were studied by transmission electron microscopy (TEM). The neat asymmetric PS-b-PMMA diblock copolymers employed in this study, respectively coded as a(1) and a(2), have similar molecular weights but different volume fractions of PS block (f(PS) = 0.273 and 0.722). Another symmetric PS-b-PMMA diblock copolymer, coded as s, which has a PS block length similar to that of a(1), was also used. For the asymmetric a(1)/a(2) blend thin films, circular multilayered structures were formed. For the asymmetric a(1)/symmetric s blend thin films, inverted phases with PMMA as the dispersed domains were observed, when the weight fraction of s was less than 50%. The origins of the morphology formation in the blend thin films via solvent treatment are discussed. Combined with the theoretical prediction by Birshtein et al. (Polymer 1992, 33, 2750), we interpret the formation of these special microstructures as due to the packing frustration induced by the difference in block lengths and the preferential interactions between the solvent and PMMA block.
Resumo:
Physical gelation in the concentrated Pluronic F127/D2O solution has been studied by a combination of small-angle neutron scattering (SANS) and Monte Carlo simulation. A 15% F127/D2O solution exhibits a sol-gel transition at low temperature and a gel-sol transition at the higher temperature, as evidenced by SANS and Monte Carlo simulation studies. Our SANS and simulation results also suggest that the sol-gel transition is dominated by the formation of a percolated polymer network, while the gel-sol transition is determined by the loss of bound solvent. Furthermore, different diffusion behaviors of different bound solvents and free solvent are observed. We expect that this approach can be further extended to study phase behaviors of other systems with similar sol-gel phase diagrams.