146 resultados para peroxides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ischemia-reperfusion has been reported to be associated with augmented oxidative stress in the course of surgery, which might be causally involved in the onset of atrial fibrillation (AF), the most common arrhythmia after cardiac surgery. We hypothesized that supplementation of antioxidants and n-3 polyunsaturated fatty acids (n-3 PUFAs) might lower the incidence of AF following coronary artery bypass graft (CABG) surgery. In the present study, by monitoring oxidative stress in the course of CABG surgery, we analyzed the efficacy of vitamins (ascorbic acid and α-tocopherol) and/or n-3 PUFAs (eicosapentaenoic acid and docosahexaenoic acid). Subjects (n = 75) were divided into 4 subgroups: control, vitamins, n-3 PUFAs, and a combination of vitamins and n-3 PUFAs. Fluorescent techniques were used to measure the antioxidative capacity, i.e. ability to inhibit oxidation. Total peroxides, endogenous peroxidase activity, and antibodies against oxidized LDL (oLAb) were used as serum oxidative stress biomarkers. Post-operative increase in oxidative stress was associated with the consumption of antioxidants and a simultaneous onset of AF. This was confirmed through an increased peroxide level and a decreased oLAb titer in control and n-3 PUFAs groups, indicating the binding of antibodies to oxidative modified epitopes. In both subgroups that were supplemented with vitamins, total peroxides decreased, and the maintenance of a constant IgG antibody titer was facilitated. However, treatment with vitamins or n-3 PUFAs was inefficient with respect to AF onset and its duration. We conclude that the administration of vitamins attenuates post-operative oxidative stress in the course of CABG surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selenoenzyme glutathione peroxidase 4 (Gpx4) is a major scavenger of phospholipid hydroperoxides. Although Gpx4 represents a key component of the reactive oxygen species-scavenging network, its relevance in the immune system is yet to be defined. Here, we investigated the importance of Gpx4 for physiological T cell responses by using T cell-specific Gpx4-deficient mice. Our results revealed that, despite normal thymic T cell development, CD8(+) T cells from T(ΔGpx4/ΔGpx4) mice had an intrinsic defect in maintaining homeostatic balance in the periphery. Moreover, both antigen-specific CD8(+) and CD4(+) T cells lacking Gpx4 failed to expand and to protect from acute lymphocytic choriomeningitis virus and Leishmania major parasite infections, which were rescued with diet supplementation of high dosage of vitamin E. Notably, depletion of the Gpx4 gene in the memory phase of viral infection did not affect T cell recall responses upon secondary infection. Ex vivo, Gpx4-deficient T cells rapidly accumulated membrane lipid peroxides and concomitantly underwent cell death driven by ferroptosis but not necroptosis. These studies unveil an essential role of Gpx4 for T cell immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L-ascorbic acid (vitamin C) is a powerful reducing agent found in millimolar concentrations in plants, and is proposed to play an important role in scavenging free radicals in plants and animals. However, surprisingly little is known about the role of this antioxidant in plant environmental stress adaptation or ascorbate biosynthesis. We report the isolation of soz1, a semi-dominant ozone-sensitive mutant that accumulates only 30% of the normal ascorbate concentration. The results of genetic approaches and feeding studies show that the ascorbate concentration affects foliar resistance to the oxidizing gas ozone. Consistent with the proposed role for ascorbate in reactive oxygen species detoxification, lipid peroxides are elevated in soz1, but not in wild type following ozone fumigation. We show that the soz1 mutant is hypersensitive to both sulfur dioxide and ultraviolet B irradiation, thus implicating ascorbate in defense against varied environmental stresses. In addition to defining the first ascorbate deficient mutant in plants, these results indicate that screening for ozone-sensitive mutants is a powerful method for identifying physiologically important antioxidant mechanisms and signal transduction pathways. Analysis of soz1 should lead to more information about the physiological roles and metabolism of ascorbate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure of humans and other mammals to hyperthermic conditions elicits many physiological responses to stress in various tissues leading to profound injuries, which eventually result in death. It has been suggested that hyperthermia may increase oxidative stress in tissues to form reactive oxygen species harmful to cellular functions. By using transgenic mice with human antioxidant genes, we demonstrate that the overproduction of glutathione peroxidase (GP, both extracellular and intracellular) leads to a thermosensitive phenotype, whereas the overproduction of Cu,Zn-superoxide dismutase has no effect on the thermosensitivity of transgenic mice. Induction of HSP70 in brain, lung, and muscle in GP transgenic mice at elevated temperature was significantly inhibited in comparison to normal animals. Measurement of peroxide production in regions normally displaying induction of HSP70 under hyperthermia revealed high levels of peroxides in normal mice and low levels in GP transgenic mice. There was also a significant difference between normal and intracellular GP transgenic mice in level of prostaglandin E2 in hypothalamus and cerebellum. These data suggest direct participation of peroxides in induction of cytoprotective proteins (HSP70) and cellular mechanisms regulating body temperature. GP transgenic mice provide a model for studying thermoregulation and processes involving actions of hydroxy and lipid peroxides in mammals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apesar de diversos estudos in vitro e em populações indicarem um efeito protetor do β-caroteno em sistemas biológicos, estudos epidemiológicos como o \"The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study\" (ATBC) e o \"The Beta-Carotene and Retinol Efficacy Trial\" (CARET) mostraram um aumento na incidência de câncer pulmonar em indivíduos fumantes suplementados com β-caroteno. Essa ação contraditória tem sido chamada na literatura de \"Paradoxo do β-Caroteno\". Sabe-se que este carotenóide sob altas pressões de oxigênio ou na presença de peróxidos pode sofrer oxidação e levar a formação de compostos como aldeídos, epóxidos, etc, que são capazes de se adicionarem covalentemente ao DNA. Estudos, in vitro e in vivo têm demonstrado a possibilidade de os metabólitos do β-caroteno agirem como agentes pró-carcinogênicos. Estes agentes quando ativados quimicamente podem levar à formação de adutos de DNA. Já se sabe que alguns desses adutos encontramse em níveis aumentados em diversas situações de risco de câncer. Diversos grupos, incluindo o nosso, têm demonstrado a formação de lesões em DNA a partir de aldeídos e epóxidos exógenos ou gerados endogenamente. O presente trabalho mostra que a reação do β-caroteno e dois de seus produtos de oxidação, retinal e β-apo-8\'-carotenal, com 2\'-desoxiguanosina e DNA leva à formação de adutos. Dentre os adutos formados, foi caracterizado o aduto 1,N2eteno-2\'-desoxiguanosina (1 ,N2-εdGuo). Os níveis de outro aduto de DNA, a 8-oxo-7,8-dihidro-2\'-deoxiguanosina (8-oxodGuo), também foram monitoradas para estudo comparativo. A formação dos adutos também foi verificada em fibroblastos normais de pulmão humano (linhagem IMR-90) expostos ao β-caroteno e aos seus produtos de oxidação. Experimentos com ratos suplementados com β-caroteno e expostos à fumaça de cigarro em períodos de 7, 30 e 180 dias, mostraram níveis aumentados de 1,N2-εdGuo nos animais suplementados com o carotenóide comparado ao grupo veículo. Aumento no nível de 8-oxodGuo também foi verificado nos tratamentos de 7 e 180 dias. Um aumento significativo no nível do eteno aduto também foi verificado nos animais suplementados com β-caroteno e expostos à fumaça de cigarro, comparado ao grupo apenas exposto à fumaça após 7 e 180 dias de exposição. Nestes mesmos grupos, o aumento do 8-oxodGuo só foi observado no tratamento por 180 dias. Sabendo que estas lesões são comprovadamente mutagênicas, nossos estudos podem contribuir para o esclarecimento dos mecanismos envolvidos na formação de câncer em fumantes suplementados ou não com β-caroteno.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidised LDL accumulates in macrophages following scavenger receptor (SR) uptake. The expression of the SR, CD36, is increased by oxidised LDL. The signalling molecule, ceramide, can modulate intracellular peroxides and increase lipid peroxidation. Ceramide also accumulates in atherosclerotic plaques. Thus, we have examined whether ceramide can modulate CD36 expression and function in human monocyte/macrophages. Addition of synthetic short chain ceramides or the action of sphingomyelinase to generate physiological long chain ceramides in situ caused significant reductions in CD36 expression by monocytes/macrophages which was not due to inhibition of mRNA expression. Inhibition of proteasomal degradation using lactacystin had no effect on CD36 expression, however, flow cytometric analysis of permeabilised cells suggested an intracellular trafficking blockade. Ceramide treated monocytes/macrophages showed dose dependent reduction in oxidised LDL uptake. Taken together, it is suggested that ceramide blocks the transport of CD36 to the membrane of monocytes/macrophages, thereby preventing uptake of oxidised LDL. © 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction – Why do we need ‘biomarkers? Biomarkers of protein oxidation Introduction Major issues/questions Protein carbonyl biomarkers Biochemistry Methods of measurement Storage, stability and limitations in use Protein thiol biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Aliphatic amino acid biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Oxidised Tryptophan Biomarkers Biochemistry Method of measurement Storage, stability and limitations on use Oxidised tyrosine biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Formation of neoepitopes on oxidised proteins Validation of assays for protein oxidation biomarkers Relationship of protein oxidation to disease Modulation of protein oxidation biomarkers by antioxidants Future perspectives Introduction to lipid peroxidation biomarkers Introduction: biochemistry of lipid peroxidation Malondialdehyde Methods of measurement Storage, stability and limitations on use Conjugated dienes Method of measurement Storage, stability and limitations of use LDL lag phase Method of measurement Storage, stability and limitations of use Hydrocarbon gases Biochemistry Method of measurement Storage, stability and limitations on use Lipofuscin Biochemistry Method of measurement Storage, stability and limitation on use Lipid peroxides Biochemistry Method of measurement Storage, stability and limitations on use Isoprostanes Biochemistry Method of measurement Storage, stability and limitations on use Possible new biomarkers of lipid oxidation Relationship of lipid peroxidation to disease Modulation of lipid peroxidation biomarkers by antioxidants Functional consequences of lipid peroxidation Contribution of dietary intake to lipid peroxidation products Biomarkers of DNA oxidation Introduction Confounding factors Units and terminology Nuclear and mitochondrial DNA damage Lymphocytes as surrogate tissues Measurement of DNA damage with the comet assay Practical details Storage, stability, and limitations of the assay Measurement of DNA base oxidation by HPLC Practical details Storage, stability and limitations of the method Measurement of DNA base oxidation by GC–MS Biochemistry of 8-oxoguanine, adenine and fapy derivatives Methods of measurement Storage, stability and limitations of the method Analysis of guanine oxidation products in urine Method of measurement Limitations and criticisms Immunochemical methods Methods of measurement Storage, stability, and limitations of the assay 32P post-labelling Method of measurement Limitations and criticisms Validation of assays for DNA oxidation Oxo-dGuo in lymphocyte DNA Urinary measurements DNA–aldehyde adducts Biochemistry Method of measurement Products of reactive nitrogen species Endpoints arising from oxidative DNA damage Mutations Chromosome aberrations Micronuclei Site-specific DNA damage Relationship of DNA oxidation to disease Modulation of DNA oxidation biomarkers by antioxidants Direct and indirect effects of oxidative stress: measures of total oxidant/antioxidant levels Visualisation of cellular oxidants Biochemistry: histochemical detection of ROS Method of measurement Limitations, storage and stability Measurement of hydrogen peroxide Biochemistry Methods of measurement Storage, stability and limitations on use Measurement of the ratio of antioxidant/oxidised antioxidant Biochemistry Method of measurement Storage, stability and limitations on use Total antioxidant capacity Biochemistry Terminology Methods of measurement Storage, stability and limitations on use Validation of assays for direct oxidant and antioxidant biomarkers Relationship of oxidant/antioxidant measurement to disease Modulation of oxidant/antioxidant biomarkers by dietary antioxidants Induction of genes in response to oxidative stress Background Measurement of antioxidant responsive genes and proteins Effects of antioxidant intake on the activity of antioxidant enzymes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to the solar ultraviolet spectrum that penetrates the Earth's stratosphere (UVA and UVB) causes cellular DNA damage within skin cells. This damage is elicited directly through absorption of energy (UVB), and indirectly through intermediates such as sensitizer radicals and reactive oxygen species (UVA). DNA damage is detected as strand breaks or as base lesions, the most common lesions being 8-hydroxydeoxyguanosine (8OHdG) from UVA exposure and cyclobutane pyrimidine dimers from UVB exposure. The presence of these products in the genome may cause misreading and misreplication. Cells are protected by free radical scavengers that remove potentially mutagenic radical intermediates. In addition, the glutathione-S-transferase family can catalyze the removal of epoxides and peroxides. An extensive repair capacity exists for removing (1) strand breaks, (2) small base modifications (8OHdG), and (3) bulky lesions (cyclobutane pyrimidine dimers). UV also stimulates the cell to produce early response genes that activate a cascade of signaling molecules (e.g., protein kinases) and protective enzymes (e.g., haem oxygenase). The cell cycle is restricted via p53-dependent and -independent pathways to facilitate repair processes prior to replication and division. Failure to rescue the cell from replication block will ultimately lead to cell death, and apoptosis may be induced. The implications for UV-induced genotoxicity in disease are considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of an experimental model of hydrogen-peroxide-induced foot pad oedema on indices of oxidative damage to biomolecules have been investigated. We have demonstrated increased levels of fluorescent protein and lipid peroxides occurring in plasma at 24 and 48 h post-injection. In addition, a decrease in the degree of galactosylation of IgG was observed which kinetically related the degree of inflammation and to the increase in protein autofluorescence (a specific index of oxidative damage). The effects of ebselen, a novel organoselenium compound which protects against oxidative tissue injury in a glutathione-peroxidase-like manner, have also been examined in this model. Pretreatment of animals with a dose of 50 mg/kg ebselen afforded significant and selective protection against lipid peroxidation only. This effect may contribute to the anti-inflammatory effect of this agent in hydroperoxide-linked tissue damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this work was to study the effect of two comonomers, trimethylolpropane trimethacrylate (TRIS) and divinylbenzene (DVB) on the nature and efficiency of grafting of two different monomers, glycidyl methacrylate (GMA) and maleic anhydride (MA) on polypropylene (P) and on natural rubber (NR) using reactive processing methods. Four different peroxides, benzoyl peroxide (BPO), dicumyl peroxide (DCP), 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (t-101), and 1,1-di(tert-butylperoxy)-3,3,5-trimethyl cyclohexene (T-29B90) were examined as free radical initiators. An appropriate methodology was established and chemical composition and reactive processing parameters were examined and optimised. It was found that in the absence of the coagents DVB and TRIS, the grafting degree of GMA and MA increased with increasing peroxide concentration, but the level of grafting was low and the homopolymerisaton of GMA and the crosslinking of NR or chain scission of PP were identified as the main side reactions that competed with the desired grafting reaction in the polymers. At high concentrations of the peroxide T-101 (>0.02 mr) cross linking of NR and chain scission of PP became dominant and unacceptable. An attempt to add a reactive coagent, e.g. TRIS during grafting of GMA on natural rubber resulted in excessive crosslinking because of the very high reactivity of this comonomer with the C=C of the rubber. Therefore, the use of any multifunctional and highly reactive coagent such as TRIS, could not be applied in the grafting of GAM onto natural rubber. In the case of PP, however, the use of TRIS and DVB was shown to greatly enhance the grafting degree and reduce the chain scission with very little extent of monomer homopolymerisation taking place. The results showed that the grafting degree was increased with increasing GMA and MA concentrations. It was also found that T-101 was a suitable peroxide to initiate the grafting reaction of these monomers on NR and PP and the optimum temperature for this peroxide was =160°C. A very preliminary work was also conducted on the use of the functionalised-PP (f-PP) in the absence and presence of the two comonomers (f-PP-DVB or f-PP-TRIS) for the purpose of compatibilising PP-PBT blends through reactive blending. Examination of the morphology of the blends suggested that an effective compatibilisation has been achieved when using f-PP-DVB and f-PP-TRIS, however more work is required in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PC12 and SH-SY5Y cell models have been proposed as potentially realistic models to investigate neuronal cell toxicity. The effects of oxidative stress (OS) caused by both H2O2 and Aβ on both cell models were assessed by several methods. Cell toxicity was quantitated by measuring cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) viability assay, an indicator of the integrity of the electron transfer chain (ETC), and cell morphology by fluorescence and video microscopy, both of which showed OS to cause decreased viability and changes in morphology. Levels of intracellular peroxide production, and changes in glutathione and carbonyl levels were also assessed, which showed OS to cause increases in intracellular peroxide production, glutathione and carbonyl levels. Differentiated SH-SY5y cells were also employed and observed to exhibit the greatest sensitivity to toxicity. The neurotrophic factor, nerve growth factor (NGF) was shown to cause protection against OS. Cells pre-treated with NGF showed higher viability after OS, generally less apoptotic morphology, recorded less apoptotic nucleiods, generally lower levels of intracellular peroxides and changes in gene expression. The neutrophic factor, brain derived growth factor (BDNF) and ascorbic acid (AA) were also investigated. BDNF showed no specific neuroprotection, however the preliminary data does warrant further investigation. AA showed a 'janus face' showing either anti-oxidant action and neuroprotection or pro-oxidant action depending on the situation. Results showed that the toxic effects of compounds such as Aβ and H2O2 are cell type dependent, and that OS alters glutathione metabolism in neuronal cells. Following toxic insult, glutathione levels are depleted to low levels. It is herein suggested that this lowering triggers an adaptive response causing alterations in glutathione metabolism as assessed by evaluation of glutathione mRNA biosynthetic enzyme expression and the subsequent increase in glutathione peroxidase (GPX) levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C-reactive protein (CRP) is the prototypic acute phase serum protein in humans. CRP is currently one of the best markers of inflammatory disease and disease activity. One of the keys cells involved in inflammation within chronic inflammatory diseases is the monocyte. Monocytes are able to modulate inflammation through cytokine expression, cytosolic peroxide formation, adhesion molecule expression and subsequent adhesion/migration to sites of inflammation. CRP has been previously shown to bind directly to monocytes through Fc receptors. However this observation is not conclusive and requires further investigation. The effects of incubation of CRP with human primary and monocytic cell lines were examined using monocytic cytokine expression, adhesion molecule expression and adhesion to endothelial cells and intracellular peroxide formation, as end points. Monocytic intracellular signalling events were investigated after interaction of CRP with specific CRP receptors on monocytes. These initial signalling events were examined for their role in modulating monocytic adhesion molecule and cytokine expression. Monocyte recruitment and retention in the vasculature is also influenced by oxidative stress. Therefore the effect of 6 weeks of antioxidant intervention in vivo was examined on monocytic adhesion molecule expression, adhesion to endothelial cells ex vivo and on serum CRP concentrations, pre- and post- supplementation with the antioxidants vitamin C and vitaInin E. In summary, CRP is able to bind FcγRIIa. CRP binding FcγR initiates an intracellular signalling cascade that phosphorylates the non-receptor tyrosine kinase, Syk, associated with intracellular tyrosine activating motifs on the cytoplasmic tail of Fcγ receptors. CRP incubations increased phosphatidyl inositol turnover and Syk phosphorylation ultimately lead to Ca2+ mobilisation in monocytes. CRP mediated Syk phosphorylation in monocytes leads to an increase in CD 11b and IL-6 expression. CRP engagement with monocytes also leads to an increase in peroxide production, which can be inhibited in vitro using the antioxidants α-tocopherol and ascorbic acid. CRP mediated CD 11b expression is not redox regulated by CRP mediated changes in cytosolic peroxides. The FcyRIla polymorphism at codon 131 effects the phenotypic driven changes described in monocytes by CRP, where R/R allotypes have a greater increase in CD11b, in response to CRP, which may be involved in promoting the monocytic inflammatory response. CRP leads to an increase in the expression of pro-inflammatory cytokines, which alters the immune phenotype of circulating monocytes. Vitamin C supplementation reduced monocytic adhesion to endothelial cells, but had no effect on serum levels of CRP. Where long-term antioxidant intervention may provide benefit from the risk of developing vascular inflammatory disease, by reducing monocytic adhesion to the vasculature. In conclusion CRP appears to be much more than just a marker of ongoing inflammation or associated inflammatory disease and disease activity. This data suggests that at pathophysiological concentrations, CRP may be able to directly modulate inflammation through interacting with monocytes and thereby alter the inflammatory response associated with vascular inflammatory diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of antioxidants and stabilizers on the oxidative degradation of polyolefins (low density polyethylene [LDPE] and polypropylene [PPJ have been studied after subjecting to prior high temperature processing treatments. The changes in the both chemical and physical properties of unstabilized polymers occurring during processing were found to be strongly dependent on the amount of oxygen present in the mixer. Subsequent thermal and photo-oxidation showed very similar characteristics and the chromophore primarily responsible for:both thermo and photooxidative degradation of unstabilized polymers was found to be hydroperoxide formed during processing. Removal of hydroperoxide by heat treatment in an inert atmosphere although increasing ketonic carbonyl concentration, markedly decreased the rate of photo-oxidation, introducing an induction period similar to that of an unprocessed sample. It was concluded that hydroperoxides are the most important initiators in normally processed polymers during the early stages of photo-oxidation. Antioxidants such as metal dithiocarbamates which act by destroying peroxides into non-radica1 products were found to be efficient melt stabilizers for polyolefins and effective UV stabilizers during the initial photo-oxidation stage, whilst a phenolic antioxidant, n-octadecyl-3-(3',5'-di-terbutyl 4'hydroxypheny1) propionate (Irganox 1076) retarded photo-oxidation rate in the later stages. A typical 'UV absorber' 2-hydroxy-4-octyloxy-benzophenone (HOBP) has a minor thermal antioxidant action but retarded photo-oxidation at all stages. A substituated piperidine derivative, Bis [2.2.6.6-tetramethylpiperidlnyl-4] sebacate (Tinuvin 770) behaved as an pro-oxidant during thermal oxidation of polyolefins but was an effective stabilizer against UV light. The UV absorber, HOBP synergised effectively with both peroxide decomposing antioxidants (metal dithiocarbamates) and a chain-breaking antioxidant (Irganox 1076) during photo-oxidation of the poymers studed whereas the combined effect was additive during thermal oxidation. By contrast, the peroxide decornposers and chain-breaking antioxidant (Irganox 1076) which were effective synergists during thermal oxidation of LDPE· were antagonistic during photo-oxidation. The mechanisms of these processes are discussed.