998 resultados para periprosthetic fracture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stiffness, strength, and toughness are the three primary attributes of a material, in terms of its mechanical properties. Bulk metallic glasses (BMGs) are known to exhibit elastic moduli at a fraction lower than crystalline alloys and have extraordinary strength. However, the reported values of fracture toughness of BMGs are highly variable; some BMGs such as the Zr-based ones have toughness values that are comparable to some high strength steels and titanium alloys, whereas there are also BMGs that are almost as brittle as silicate glasses. Invariably, monolithic BMGs exhibit no or low crack growth resistance and tend to become brittle upon structural relaxation. Despite its critical importance for the use of BMGs as structural materials, the fracture toughness of BMGs is relatively poorly understood. In this paper, we review the available literature to summarize the current understanding of the mechanics and micromechanisms of BMG toughness and highlight the needs for future research in this important area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a single edge notched plate (SEN(T)) subjected to a tensile stress pulse is analysed, using a 2D plane strain dynamic finite element procedure. The interaction of the notch with a pre-nucleated hole ahead of it is examined. The background material is modelled by the Gurson constitutive law and ductile failure by microvoid coalescence in the ligament connecting the notch and the hole is simulated. Both rate independent and rate dependent material behaviour is considered. The notch tip region is subjected to a range of loading rates j by varying the peak value and the rise time of the applied stress pulse. The results obtained from these simulations are compared with a three point bend (TPB) specimen subjected to impact loading analysed in an earlier work [3] The variation of J at fracture initiation, J(c), with average loading rate j is obtained from the finite element simulations. It is found that the functional relationship between J(c) and j is fairly independent of the specimen geometry and is only dependent on material behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small additions of Cu to the SUS 304H, a high temperature austenitic stainless steel, enhance its high temperature strength and creep resistance. As Cu is known to cause embrittlement, the effect of Cu on room temperature mechanical properties that include fracture toughness and fatigue crack threshold of as-solutionized SUS 304H steel were investigated in this work. Experimental results show a linear reduction in yield and ultimate strengths with Cu addition of up to 5 wt.% while ductility drops markedly for 5 wt.% Cu alloy. However, the fracture toughness and the threshold stress intensity factor range for fatigue crack initiation were found to be nearly invariant with Cu addition. This is because the fracture in this alloy is controlled by the debonding from the matrix of chromium carbide precipitates, as evident from fractography. Cu, on the other hand, remains either in solution or as nano-precipitates and hence does not influence the fracture characteristics. It is concluded that small additions of Cu to 304H will not have adverse effects on its fracture and fatigue behavior. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic method of JIc calculation using a single specimen is discussed. Dokouipil's approach for evaluating the JIc value is extended further and the effect of prestrain on rolled mild steel with significant inclusions is studied using this modified approach. Although this method does not give an accurate value of JIc, it is quite effective for a comparative study. While the fracture toughness of annealed and 7% prestrained materials are about the same, the fracture toughness of 3% prestrained material is significantly lower.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture properties of different concrete-concrete interfaces are determined using the Bazant's size effect model. The size effect on fracture properties are analyzed using the boundary effect model proposed by Wittmann and his co-workers. The interface properties at micro-level are analyzed through depth sensing micro-indentation and scanning electron microscopy. Geometrically similar beam specimens of different sizes having a transverse interface between two different strengths of concrete are tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control. The fracture properties such as, fracture energy (G(f)), length of process zone (c(f)), brittleness number (beta), critical mode I stress intensity factor (K-ic), critical crack tip opening displacement CTODc (delta(c)), transitional ligament length to free boundary (a(j)), crack growth resistance curve and micro-hardness are determined. It is seen that the above fracture properties decrease as the difference between the compressive strength of concrete on either side of the interface increases. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several methods for improving the strength of metallic materials are available and correlations between strength and various microstructural features have been established. The purpose of this paper is to review parallel developments favouring improved fracture resistance. Resistance to fracture in monotonie loading, cyclic loading and when fracture is environment-aided have been considered in steels, aluminium alloys and anisotropic materials. Finally, the question of optimising alloy behaviour is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In some recent dropweight impact experiments [5] with pre-notched bend specimens of 4340 steel, it was observed that considerable crack tunneling occurred in the interior of the specimen prior to gross fracture initiation on the free surfaces. The final failure of the side ligaments happened because of shear lip formation. The tunneled region is characterized by a flat, fibrous fracture surface. In this paper, the experiments of [5] (corresponding to 5 m/s impact speed) are analyzed using a plane strain, dynamic finite element procedure. The Gurson constitutive model that accounts for the ductile failure mechanisms of micro-void nucleation, growth and coalescence is employed. The time at which incipient failure was observed near the notch tip in this computation, and the value of the dynamic J-integral, J d, at this time, compare reasonably well with experiments. This investigation shows that J-controlled stress and deformation fields are established near the notch tip whenever J d , increases with time. Also, it is found that the evolution of micro-mechanical quantities near the notch root can be correlated with the time variation of J d .The strain rate and the adiabatic temperature rise experienced at the notch root are examined. Finally, spatial variations of stresses and deformations are analyzed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fracture behaviour of notched and un-notched plain concrete slender beams subjected to three-point or four-point bending is analyzed through a one-dimensional model, also called Softening Beam Model. Fundamental equations of equilibrium are used to develop the model. The influence of structural size in altering the fracture mode from brittle fracture to plastic collapse is explained through the stress distribution across the uncracked ligament obtained by varying the strain softening modulus. It is found that at the onset of fracture instability, stress at the crack tip is equal to zero. The maximum load and fracture load are found to be different and a unique value for the fracture load is obtained. It is shown that the length of the fracture process zone depends on the value of the strain softening modulus. Theoretical limits for fracture process zone length are also calculated. Several nonlinear fracture parameters, such as, crack tip opening displacement, crack mouth opening displacement and fracture energy are computed for a wide variety of beam specimens reported in the literature and are found to compare very well with experimental and theoretical results. It is demonstrated that by following a simple procedure, both pre-peak and post-peak portions of load versus crack mouth opening displacement curve can be obtained quite accurately. Further, a simple procedure to calculate the maximum load is also developed. The predicted values of maximum load are found to agree well with the experimental values. The Softening Beam Model (SBM), proposed in this investigation is very simple and is based on rational considerations. It can completely describe the fracture process from the beginning of formation of the fracture process zone till the onset of fracture instability.A l'aide d'un modèle unidimensionnel dit ldquoSoftening Beam Modelrdquo (SBM), on analyse le comportement à rupture de poutres élancées pleines entaillées ou non, soumises en flexion en trois ou quatre points. Des équations fondamentales d'équilibre sont utilisées pour développer le modèle. On explique l'influence de la taille du composant sur l'altération du mode de rupture en rupture fragile et en effondrement plastique par la distribution par la distribution des contraintes sur le ligament non fissuré lorsque varie le module d'adoucissement. On trouve que la contrainte à l'extrémité de la fissure est nulle est nulle au début de l'instabilité de la rupture. La charge maximum et la charge à la rupture sont trouvées différentes, et on obtient une valeur unique de la charge à la rupture. On montre que la longueur de la zone concernée par le processus de rupture d'pend de la valeur du module d'adoucissement. On calcule également les limites théoriques de longueur de cette zone. Divers paramètres de rupture non linéaire sont calculés pour une large gamme d'éprouvettes en poutres reprises dans la littérature; on trouve qu'il existe une bonne concordance avec les résultats expérimentaux et théoriques. On démontre qu'en suivant une procédure simple on peut obtenir avec une bonne précision la courbe reliant les portions avant et après le pic de sollicitation en fonction du COD de la fissure. En outre, on développe une procédure simple pour calculer la charge maximum. Les valeurs prédites sont en bon accord avec les valeurs expérimentales. Le modèle SBM proposé est très simple et est basé sur des considérations rationnelles. Il est susceptible de décrire complètement le processus de rupture depuis le début de la formation de la zone intéressée jusqu'à l'amorçage de la rupture instable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a finite element analysis of steady-state dynamic crack growth under Mode I, plane strain, small-scale yielding conditions is performed in a rate dependent plastic material characterized by the over-stress model. The main objective of the paper is to obtain theoretically the dependence of dynamic fracture toughness on crack speed. Crack propagation due to a ductile (micro-void) mechanism or a brittle (cleavage) mechanism, as well as transition from one mode to another are considered. The conversion from ductile to brittle has been observed experimentally but has received very little attention using analytical methods. Local fracture criteria based on strains and stresses are used to describe ductile and brittle fracture mechanisms. The results obtained in this paper are in general agreement with micro-structural observations of mode conversion during fracture initiation. Finally, the particular roles played by material rate sensitivity and inertia are examined in some detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear, aerospace, naval and missile industries place emphasis on materials with high structural integrity and reliable performance so as to meet certain stringent requirements in service. Strength is not the only criterion for selection. Properties such as fatigue resistance. impact toughness and fracture toughness are equally important. Electroslag refining (ESR) has been used widely and successfully over the years for improving the fatigue resistance, creep resistance, impact strength and fracture toughness of steels and alloy steels. But application of ESR to aluminium alloys is only a recent endeavour. A high-strength aircraft aluminium alloy IS: 7670 was therefore chosen for studies on the fatigue strength and the impact and fracture toughness. The results indicate that the fatigue resistance is considerably improved after refining and that the impact strength and fracture toughness of the refined alloy are comparable with that of the unrefined alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load-deflection curves for a notched beam under three-point load are determined using the Fictitious Crack Model (FCM) and Blunt Crack Model (BCM). Two values of fracture energy GF are used in this analysis: (i) GF obtained from the size effect law and (ii) GF obtained independently of the size effect. The predicted load-deflection diagrams are compared with the experimental ones obtained for the beams tested by Jenq and Shah. In addition, the values of maximum load (Pmax) obtained by the analyses are compared with the experimental ones for beams tested by Jenq and Shah and by Bažant and Pfeiffer. The results indicate that the descending portion of the load-deflection curve is very sensitive to the GF value used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mode I and mode II fracture toughness and the critical strain energy release rate for different concrete-concrete jointed interfaces are experimentally determined using the Digital Image Correlation technique. Concrete beams having different compressive strength materials on either side of a centrally placed vertical interface are prepared and tested under three-point bending in a closed loop servo-controlled testing machine under crack mouth opening displacement control. Digital images are captured before loading (undeformed state) and at different instances of loading. These images are analyzed using correlation techniques to compute the surface displacements, strain components, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It is seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, static and drop-weight impact experiments, which have been conducted using three-point bend fracture specimens of a high-strength low-alloy steel, are analysed by performing finite-element simulations. The Gurson constitutive model that accounts for the ductile failure mechanisms of microvoid nucleation, growth and is employed within the framework of a finite deformation plasticity theory. Two populations of second-phase particles are considered, including large inclusions which initiate voids at an early stage and small particles which require large strains to nucleate voids. The most important objective of the work is to assess quantitatively the effects of material inertia, strain rate sensitivity and local adiabatic temperature rise (due to conversion of plastic work into heat) on dynamic ductile crack initiation. This is accomplished by comparing the evolution histories of void volume fraction near the notch tip in the static analysis with the dynamic analyses. The results indicate that increased strain hardening caused by strain rate sensitivity, which becomes important under dynamic loading, plays a benign role in considerably slowing down the void growth rate near the notch tip. This is partially opposed by thermal softening caused by adiabatic heating near the notch tip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.