923 resultados para pancreatic beta-cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Diabetes Mellitus é conhecida por uma doença metabólica caracterizada por um défice na ação ou secreção da insulina, na qual a consequência direta é o aparecimento de hiperglicemia, isto é, o nível de glicose apresentar valores elevados (Kidambi, 2008; Silva-Sousa, 2003). A DM1, especificamente, é apresentada como uma doença que é resultado da destruição das células beta do pâncreas, desenvolvendo assim, um défice na produção de insulina (Raymond et al., 2001). As complicações orais da DM1 incluem xerostomia, doença periodontal (gengivite e periodontite), abcessos dentários, perda de dentes, lesões de tecidos moles e síndrome de ardência oral. A complicação oral mais frequente da DM1 nas crianças é o aumento da sensibilidade à doença periodontal. A doença periodontal é caracterizada como uma reação inflamatória infecciosa dos tecidos gengivais (gengivite) ou do suporte dos dentes, ou seja, ligamento periodontal, cemento e osso alveolar (periodontite), podendo induzir um certo grau de resistência à insulina. Ambas as doenças resultam da interação entre microorganismos periodontais patogénicos. A avaliação e influência do controlo da doença é expressa pelos valores médios de hemoglobina glicosada (Hba1c) na saúde oral nas crianças e adolescentes com DM1. Vários estudos demonstraram que o controlo glicémico teve uma influencia sobre a saúde oral de crianças e adolescentes com DM1. Assim uma avaliação oral, deve fazer parte de procedimentos de rotina no atendimento de crianças e adolescentes com DM1. O dentista deve ser parte da equipa multidisciplinar que auxilia os indivíduos com DM1. O tratamento precoce numa população infantil com DM1, pode diminuir a severidade da doença periodontal. O presente trabalho tem por objectivo realizar uma revisão bibliográfica sobre a importância do estudo em crianças e adolescentes portadores de DM1 e doenças da cavidade oral, nomeadamente, a periodontite, e respetivas implicações.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High protein content in the diet during childhood and adolescence has been associated to the onset insulin-dependent diabetes mellitus. We investigated the effect of interleukin-1 beta (IL-I beta) on insulin secretion, glucose metabolism, and nitrite formation by islets isolated from rats fed with normal protein (NP, 17%) or low protein (LP, 6%) after weaning. Pretreatment of islets with IL-1 beta for 1 h or 34 h inhibited the insulin secretion induced by glucose in both groups, but it was less marked in LP than in NP group. Islets from LP rats exhibited a decreased IL-1 beta -induced nitric oxide (NO) production, lower inhibition of D-[(UC)-C-14]-glucose oxidation to (CO2)-C-14, and less pronounced effect of IL-1 beta on alpha -ketoisocaproic acid-induced insulin secretion than NP islets. However, when the islets were stimulated by high concentrations of K+ the inhibitory effect of IL-1 beta on insulin secretion was not different between groups. In conclusion, protein restriction protects beta -cells of the deleterious effect of IL-1 beta, apparently, by decreasing NO production. The lower NO generation in islets from protein deprived rats may be due to increased free fatty acids oxidation and consequent alteration in Ca2+ homeostasis. (C) 2001 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most pancreatic cancer patients present with inoperable disease or develop metastases after surgery. Conventional therapies are usually ineffective in treating metastatic disease. It is evident that novel therapies remain to be developed. Transforming growth factor beta (TGF-beta) plays a key role in cancer metastasis, signaling through the TGF-beta type I/II receptors (TbetaRI/II). We hypothesized that targeting TbetaRI/II kinase activity with the novel inhibitor LY2109761 would suppress pancreatic cancer metastatic processes. The effect of LY2109761 has been evaluated on soft agar growth, migration, invasion using a fibroblast coculture model, and detachment-induced apoptosis (anoikis) by Annexin V flow cytometric analysis. The efficacy of LY2109761 on tumor growth, survival, and reduction of spontaneous metastasis have been evaluated in an orthotopic murine model of metastatic pancreatic cancer expressing both luciferase and green fluorescence proteins (L3.6pl/GLT). To determine whether pancreatic cancer cells or the cells in the liver microenvironment were involved in LY2109761-mediated reduction of liver metastasis, we used a model of experimental liver metastasis. LY2109761 significantly inhibited the L3.6pl/GLT soft agar growth, suppressed both basal and TGF-beta1-induced cell migration and invasion, and induced anoikis. In vivo, LY2109761, in combination with gemcitabine, significantly reduced the tumor burden, prolonged survival, and reduced spontaneous abdominal metastases. Results from the experimental liver metastasis models indicate an important role for targeting TbetaRI/II kinase activity on tumor and liver microenvironment cells in suppressing liver metastasis. Targeting TbetaRI/II kinase activity on pancreatic cancer cells or the cells of the liver microenvironment represents a novel therapeutic approach to prevent pancreatic cancer metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin promoter factor 1 (IPF1), a member of the homeodomain protein family, serves an early role in pancreas formation, as evidenced by the lack of pancreas formation in mice carrying a targeted disruption of the IPF1 gene [Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. (1994) Nature (London) 371, 606-609]. In adults, IPF1 expression is restricted to the beta-cells in the islets of Langerhans. We report here that IPF1 induces expression of a subset of beta-cell-specific genes (insulin and islet amyloid polypeptide) when ectopically expressed in clones of transformed pancreatic islet alpha-cells. In contrast, expression of IPF1 in rat embryo fibroblasts factor failed to induce insulin and islet amyloid polypeptide expression. This is most likely due to the lack of at least one other essential insulin gene transcription factor, the basic helix-loop-helix protein Beta 2/NeuroD, which is expressed in both alpha- and beta-cells. We conclude that IPF1 is a potent transcriptional activator of endogenous insulin genes in non-beta islet cells, which suggests an important role of IPF1 in beta-cell maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transplantation of isolated islets from cadaver pancreas is a promising possibility for the optimal treatment of type 1 diabetes. The lack of islets is a major problem. Here we have investigated the possibility of generating islets in tissue culture of human pancreatic cells. We first reproduced a previously reported method of in vitro generation of endocrine cells from human adult pancreatic tissue. By tracing the bromodeoxyuridine-labeled cells in differentiated islet buds, we found that the pancreatic progenitor cells represented a subpopulation of cytokeratin 19 (CK19)-positive ductal cells. Serum-free medium and Matrigel overlay were essential for the endocrine differentiation. We then examined the involvement of preexisting islet cells in islet neogenesis. About 6-10% of endocrine cells dedifferentiated and acquired a transitional phenotype by coexpressing CK19. Significant cell proliferation was only observed in CK19-positive cells, but not in chromogranin A-positive endocrine cells. The in vitro-derived human islets were morphologically and functionally immature when compared with normal islets. Their insulin mRNA levels were only 4-5% of that found in fresh human islets, and glucose-stimulated insulin release was 3 times lower than that of control islets. Moreover, some immature endocrine cells coexpressed insulin and glucagon. After transplantation in nude mice, the in vitro-generated islets became mature with one type of hormone per endocrine cell. In addition, we also found that also in both fresh islet transplants many cells coexpressed endocrine markers and ductal marker CK19 as a sign of ductal to endocrine cell transition. Finally, we studied the effects of clinically used immunosuppressive drugs on precursor cell proliferation and differentiation. Mycophenolate mofetil (MMF) severely hampered duct-cell proliferation, and significantly reduced the total DNA content indicating its antiproliferative effect on the precursors. Tacrolimus mainly affected differentiated beta cells by decreasing the insulin content per DNA as well as the proportion of insulin-positive cells. Sirolimus and daclizumab did not show any individual or synergistic side effects suggesting that these drugs are amenable for use in clinical islet transplantation. In summary, we confirm the capacity of endocrine differentiation from progenitors present in the adult human pancreas. The plasticity of differentiated cell types of human pancreas may be a potential mechanism of human pancreas regeneration. Ductal cell differentiation into endocrine cells in transplanted islets may be an important factor in sustaining the long-term function of islet transplants. The immunosuppressive protocol is likely to be an important determinant of long-term clinical islet graft function. Moreover, these results provide new information on the mechanisms of pancreatic islet regeneration and provide the basis for the development of new strategies for the treatment of insulin deficient diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electron microscopical examination has been made of the fine structure and disposition of pancreatic polypeptide immunoreactive cells associated with the egg-forming apparatus in Diclidophora merlangi. The cell bodies are positioned in the parenchyma surrounding the ootype and taper to axon-like processes that extend to the ootype wall. The terminal regions of these processes branch and anastomose and, in places, the swollen endings or varicosities form synaptic appositions with the muscle fibres in the ootype wall. The cells are characterized by an extensive GER-Golgi system that is involved in the assembly and packaging of dense-cored vesicles. The vesicles accumulate in the axons and terminal varicosities, and their contents were found to be immunoreactive with antisera raised to the C-terminal hexapeptide amide of pancreatic polypeptide. It is concluded that the cells are neurosecretory in appearance and that, functionally, their secretions may serve to regulate ootype motility and thereby help co-ordinate egg production in the worm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE-We studied whether manganese-enhanced high-field magnetic resonance (MR) imaging (MEHFMRI) could quantitatively detect individual islets in situ and in vivo and evaluate changes in a model of experimental diabetes.RESEARCH DESIGN AND METHODS-Whole pancreata from untreated (n = 3), MnCl(2) and glucose-injected mice (n = 6), and mice injected with either streptozotocin (STZ; n = 4) or citrate buffer (n = 4) were imaged ex vivo for unambiguous evaluation of islets. Exteriorized pancreata of MnCl(2) and glucose-injected mice (n = 6) were imaged in vivo to directly visualize the gland and minimize movements. In all cases, MR images were acquired in a 14.1 Testa scanner and correlated with the corresponding (immuno)histological sections.RESULTS-In ex vivo experiments, MEHFMRI distinguished different pancreatic tissues and evaluated the relative abundance of islets in the pancreata of normoglycemic mice. MEHFMRI also detected a significant decrease in the numerical and volume density of islets in STZ-injected mice. However, in the latter measurements the loss of beta-cells was undervalued under the conditions tested. The experiments on the externalized pancreata confirmed that MEHFMRI could visualize native individual islets in living, anesthetized mice.CONCLUSIONS-Data show that MEHFMRI quantitatively visualizes individual islets in the intact mouse pancreas, both ex vivo and in vivo. Diabetes 60:2853-2860, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF), originally identified as a cytokine secreted by T lymphocytes, was found recently to be both a pituitary hormone and a mediator released by immune cells in response to glucocorticoid stimulation. We report here that the insulin-secreting beta cell of the islets of Langerhans expresses MIF and that its production is regulated by glucose in a time- and concentration-dependent manner. MIF and insulin colocalize by immunocytochemistry within the secretory granules of the pancreatic islet beta cells, and once released, MIF appears to regulate insulin release in an autocrine fashion. In perifusion studies performed with isolated rat islets, immunoneutralization of MIF reduced the first and second phase of the glucose-induced insulin secretion response by 39% and 31%, respectively. Conversely, exogenously added recombinant MIF was found to potentiate insulin release. Constitutive expression of MIF antisense RNA in the insulin-secreting INS-1 cell line inhibited MIF protein synthesis and decreased significantly glucose-induced insulin release. MIF is therefore a glucose-dependent, islet cell product that regulates insulin secretion in a positive manner and may play an important role in carbohydrate metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le cycle glycérolipides/acides gras libres (GL/FFA) est une voie métabolique clé qui relie le métabolisme du glucose et des acides gras et il est composé de deux processus métaboliques appelés lipogenèse et lipolyse. Le cycle GL/FFA, en particulier la lipolyse des triglycérides, génère diverses molécules de signalisation pour réguler la sécrétion d'insuline dans les cellules bêta pancréatiques et la thermogenèse non-frissonnante dans les adipocytes. Actuellement, les lipides provenant spécifiquement de la lipolyse impliqués dans ce processus sont mal connus. L’hydrolyse des triglycérides dans les cellules β est réalisée par les actions successives de la triglycéride lipase adipocytaire pour produire le diacylglycérol, ensuite par la lipase hormono-sensible pour produire le monoacylglycérol (MAG) et enfin par la MAG lipase (MAGL) qui relâche du glycerol et des acides gras. Dans les cellules bêta, la MAGL classique est très peu exprimée et cette étude a démontré que l’hydrolyse de MAG dans les cellules β est principalement réalisée par l'α/β-Hydrolase Domain-6 (ABHD6) nouvellement identifiée. L’inhibition d’ABHD6 par son inhibiteur spécifique WWL70, conduit à une accumulation des 1-MAG à longues chaines saturées à l'intérieur des cellules, accompagnée d’une augmentation de la sécrétion d'insuline stimulée par le glucose (GSIS). Baisser les niveaux de MAG en surexprimant ABHD6 dans la lignée cellulaire bêta INS832/13 réduit la GSIS, tandis qu’une augmentation des niveaux de MAG par le « knockdown » d’ABHD6 améliore la GSIS. L'exposition aiguë des monoacylglycérols exogènes stimule la sécrétion d'insuline de manière dose-dépendante et restaure la GSIS supprimée par un inhibiteur de lipases appelé orlistat. En outre, les souris avec une inactivation du gène ABHD6 dans tous les tissus (ABHD6-KO) et celles avec une inactivation du gène ABHD6 spécifiquement dans la cellule β présentent une GSIS stimulée, et leurs îlots montrent une augmentation de la production de monoacylglycérol et de la sécrétion d'insuline en réponse au glucose. L’inhibition d’ABHD6 chez les souris diabétiques (modèle induit par de faibles doses de streptozotocine) restaure la GSIS et améliore la tolérance au glucose. De plus, les résultats montrent que les MAGs non seulement améliorent la GSIS, mais potentialisent également la sécrétion d’insuline induite par les acides gras libres ainsi que la sécrétion d’insuline induite par divers agents et hormones, sans altération de l'oxydation et l'utilisation du glucose ainsi que l'oxydation des acides gras. Nous avons démontré que le MAG se lie à la protéine d’amorçage des vésicules appelée Munc13-1 et l’active, induisant ainsi l’exocytose de l'insuline. Sur la base de ces observations, nous proposons que le 1-MAG à chaines saturées agit comme facteur de couplage métabolique pour réguler la sécrétion d'insuline et que ABHD6 est un modulateur négatif de la sécrétion d'insuline. En plus de son rôle dans les cellules bêta, ABHD6 est également fortement exprimé dans les adipocytes et son niveau est augmenté avec l'obésité. Les souris dépourvues globalement d’ABHD6 et nourris avec une diète riche en gras (HFD) montrent une faible diminution de la prise alimentaire, une diminution du gain de poids corporel et de la glycémie à jeun et une amélioration de la tolérance au glucose et de la sensibilité à l'insuline et ont une activité locomotrice accrue. En outre, les souris ABHD6-KO affichent une augmentation de la dépense énergétique et de la thermogenèse induite par le froid. En conformité avec ceci, ces souris présentent des niveaux élevés d’UCP1 dans les adipocytes blancs et bruns, indiquant le brunissement des adipocytes blancs. Le phénotype de brunissement est reproduit dans les souris soit en les traitant de manière chronique avec WWL70 (inhibiteur d’ABHD6) ou des oligonucléotides anti-sense ciblant l’ABHD6. Les tissus adipeux blanc et brun isolés de souris ABHD6-KO montrent des niveaux très élevés de 1-MAG, mais pas de 2-MAG. L'augmentation des niveaux de MAG soit par administration exogène in vitro de 1-MAG ou par inhibition ou délétion génétique d’ABHD6 provoque le brunissement des adipocytes blancs. Une autre évidence indique que les 1-MAGs sont capables de transactiver PPARα et PPARγ et que l'effet de brunissement induit par WWL70 ou le MAG exogène est aboli par les antagonistes de PPARα et PPARγ. L’administration in vivo de l’antagoniste de PPARα GW6471 à des souris ABHD6-KO inverse partiellement les effets causés par l’inactivation du gène ABHD6 sur le gain de poids corporel, et abolit l’augmentation de la thermogenèse, le brunissement du tissu adipeux blanc et l'oxydation des acides gras dans le tissu adipeux brun. L’ensemble de ces observations indique que ABHD6 régule non seulement l’homéostasie de l'insuline et du glucose, mais aussi l'homéostasie énergétique et la fonction des tissus adipeux. Ainsi, 1-MAG agit non seulement comme un facteur de couplage métabolique pour réguler la sécrétion d'insuline en activant Munc13-1 dans les cellules bêta, mais régule aussi le brunissement des adipocytes blancs et améliore la fonction de la graisse brune par l'activation de PPARα et PPARγ. Ces résultats indiquent que ABHD6 est une cible prometteuse pour le développement de thérapies contre l'obésité, le diabète de type 2 et le syndrome métabolique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To investigate the action of palmitate on insulin receptor (IR) signaling pathway in rat pancreatic islets. The following proteins were studied: IR substrate-1 and -2 (IRS1 and IRS2), phosphatidylinositol 3-kinase, extracellular signal-regulated protein kinase-1 and -2 (ERK1/2), and signal transducer and activator of transcription 3 (STAT3). Methods: Immunoblotting and immunoprecipitation assays were used to evaluate the phosphorylation states of IRS1 and IRS2 (tyrosine [Tyr]), ERK1/2 (threonine 202 [Thr202]/Tyr204), and STAT3 (serine [Ser727]). Results: The exposure of rat pancreatic islets to 0.1-mmol/L palmitate for up to 30 minutes produced a significant increase of Tyr phosphorylation in IRS2 but not in IRS1. The association of phosphatidylinositol 3-kinase with IRS2 was also upregulated by palmitate. Exposure to 5.6-mmol/L glucose caused a gradual decrease in ERK1/2 (Thr202/Tyr204) and STAT3 (serine [Ser727]) phosphorylations after 30-minute incubation. The addition of palmitate (0.1 mmol/L), associated with 5.6-mmol/L glucose, abolished these latter effects of glucose after 15-minute incubation. Conclusions: Palmitate at physiological concentration associated with 5.6-mmol/L glucose activates IR signaling pathway in pancreatic A cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the effect of a high-fat diet (HFD) on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in rat pancreatic islets. We investigated if changes in NADPH oxidase are connected to beta cell dysfunction reported in obese animals. Methods: Male Wistar rats were fed a HFD or control diet for 3 months. DNA fragmentation, insulin secretion, and [U-(14)C] glucose oxidation were examined in isolated pancreatic islets. The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were assessed by immunohistochemistry. The protein content of gp91(phox) and p47(phox) was evaluated by Western blotting. Production of reactive oxygen species (ROS) was determined by a fluorescence assay using hydroethidine. Results: Occurrence of DNA fragmentation was reduced in pancreatic islets from HFD rats. There were no differences in oxidative stress markers between the groups. Glucose oxidation and insulin secretion were elevated due to high glucose in pancreatic islets from HFD rats. Protein concentrations of p47(phox) and gp91(phox) subunits were reduced and ROS production was diminished in pancreatic islets from HFD rats. Conclusions: The diminished content of NADPH oxidase subunits and ROS concentrations may be associated with increased glucose oxidation and insulin secretion in an attempt to compensate for the peripheral insulin resistance elicited by the HFD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endurance exercise is known to enhance peripheral insulin sensitivity and reduce insulin secretion. However, it is unknown whether the latter effect is due to the reduction in plasma substrate availability or alterations in beta-cell secretory machinery. Here, we tested the hypothesis that endurance exercise reduces insulin secretion by altering the intracellular energy-sensitive AMP-activated kinase (AMPK) signaling pathway. Male Wistar rats were submitted to endurance protocol training one, three, or five times per week, over 8 weeks. After that, pancreatic islets were isolated, and glucose-induced insulin secretion (GIIS), glucose transporter 2 (GLUT2) protein content, total and phosphorylated calmodulin kinase kinase (CaMKII), and AMPK levels as well as peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1 alpha) and uncoupling protein 2 (UCP2) content were measured. After 8 weeks, chronic endurance exercise reduced GIIS in a dose-response manner proportionally to weekly exercise frequency. Contrariwise, increases in GLUT2 protein content, CaMKII and AMPK phosphorylation levels were observed. These alterations were accompanied by an increase in UCP2 content, probably mediated by an enhancement in PGC-1 alpha protein expression. In conclusion, chronic endurance exercise induces adaptations in beta-cells leading to a reduction in GIIS, probably by activating the AMPK signaling pathway. Journal of Endocrinology (2011) 208, 257-264

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)