950 resultados para pH values
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the interference of the radiopacifiers bismuth oxide (BO), bismuth carbonate (BC), bismuth subnitrate (BS), and zirconiun oxide (ZO) on the solubility, alkalinity and antimicrobial properties of white Portland cement (WPC). The substances were incorporated to PC, at a ratio of 1:4 (v/v) and subjected to a solubility test. To evaluate the pH, the cements were inserted into retrograde cavities prepared in simulated acrylic teeth and immediately immersed in deionized water. The pH of the solution was measured at 3, 24, 72 and 168 h. The antimicrobial activity was evaluated by a radial diffusion method against the microorganisms S. aureus (ATCC 25923), P. aeruginosa (ATCC 27853), E. faecalis (ATCC 29212) and C. albicans (ATCC 10231). The zone of microbial growth inhibition was measured after 24 h. The addition of BS and BC increased the solubility of the cement. The pH values demonstrated that all materials produced alkaline levels. At 3 h, BS showed lower pH than WPC (p<0.05). At 168 h, all materials showed similar pHs (p>0.05). The materials did not present antimicrobial activity for S. aureus, P. aeruginosas and E. faecalis (p>0.05). With regards to C. albicans, all materials formed an inhibition zone, mainly the mixture of WPC with ZO (p<0.05). The type of radiopacifier incorporated into WPC interfered with its physical and antimicrobial properties. ZO was found to be a viable radiopacifier that can be used with WPC.
Resumo:
Ba0.77Ca0.23TiO3 ceramics were produced in this work starting from nanopowders synthesized via a polymeric precursor method. By adjusting the pH values of the precursor solutions above 7, it was possible to prepare powders weakly aggregated and with a smaller particle size, both facts which traduced into an enhanced nanopowders' sintering process at comparatively lower temperatures. Irrespective of the initial pH value, highly-dense and second phase-free ceramics were obtained following optimal sintering parameters (temperature and time) extracted from dilatometric and density measurements. By considering these and other sintering conditions, moreover, polycrystalline materials with an average grain size varying from 0.35 to 8 mm were produced, the grain growth process involving liquid phase-assisted sintering for heat treatments achieved at 1320 °C. The study of grain size effects on the ferroelectric properties of these materials was conducted, the results being discussed in the light of previous debates, including grain size-dependent degree of tetragonal distortion in such materials, as verified in this work.
Resumo:
The aim of this study was to compare tooth surface pH after drinking orange juice or water in 39 patients with dental erosion and in 17 controls. The following investigations were carried out: measurement of pH values on selected tooth surfaces after ingestion of orange juice followed by ingestion of water (acid clearance), measurement of salivary flow rate and buffering capacity. Compared with the controls, patients with erosion showed significantly greater decreases in pH after drinking orange juice, and the pH stayed lower for a longer period of time (p < 0.05). Saliva parameters showed no significant differences between the two patient groups except for a lower buffering capacity at pH 5.5 in the erosion group.
Resumo:
Epsilonproteobacteria have been found globally distributed in marine anoxic/sulfidic areas mediating relevant transformations within the sulfur and nitrogen cycles. In the Baltic Sea redox zones, chemoautotrophic epsilonproteobacteria mainly belong to the Sulfurimonas gotlandica GD17 cluster for which recently a representative strain, S. gotlandica GD1T, could be established as a model organism. In this study, the potential effects of changes in dissolved inorganic carbon (DIC) and pH on S. gotlandica GD1T were examined. Bacterial cell abundance within a broad range of DIC concentrations and pH values were monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for achieving maximal cell numbers was already reached at 800 µmol/l, which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6-7.1 there was no significant difference in substrate utilization; however, at lower pH values maximum cell abundance decreased sharply and cell-specific substrate consumption increased.
Resumo:
Effects of ocean acidification on Emiliania huxleyi strain RCC 1216 (calcifying, diploid life-cycle stage) and RCC 1217 (non-calcifying, haploid life-cycle stage) were investigated by measuring growth, elemental composition, and production rates under different pCO2 levels (380 and 950 µatm). In these differently acclimated cells, the photosynthetic carbon source was assessed by a (14)C disequilibrium assay, conducted over a range of ecologically relevant pH values (7.9-8.7). In agreement with previous studies, we observed decreased calcification and stimulated biomass production in diploid cells under high pCO2, but no CO2-dependent changes in biomass production for haploid cells. In both life-cycle stages, the relative contributions of CO2 and HCO3 (-) uptake depended strongly on the assay pH. At pH values =< 8.1, cells preferentially used CO2 (>= 90 % CO2), whereas at pH values >= 8.3, cells progressively increased the fraction of HCO3 (-) uptake (~45 % CO2 at pH 8.7 in diploid cells; ~55 % CO2 at pH 8.5 in haploid cells). In contrast to the short-term effect of the assay pH, the pCO2 acclimation history had no significant effect on the carbon uptake behavior. A numerical sensitivity study confirmed that the pH-modification in the (14)C disequilibrium method yields reliable results, provided that model parameters (e.g., pH, temperature) are kept within typical measurement uncertainties. Our results demonstrate a high plasticity of E. huxleyi to rapidly adjust carbon acquisition to the external carbon supply and/or pH, and provide an explanation for the paradoxical observation of high CO2 sensitivity despite the apparently high HCO3 (-) usage seen in previous studies.
Resumo:
This study has examined the effect of low seawater pH values (induced by an increased CO2 partial pressure) on the rates of photosynthesis, as well as on the carbon budget and carbon translocation in the scleractinian coral species Stylophora pistillata, using a new model based on 13C labelling of the photosynthetic products. Symbiont photosynthesis contributes to a large part of the carbon acquisition in tropical coral species, and it is thus important to know how environmental changes affect this carbon acquisition and allocation. For this purpose, nubbins of S. pistillata were maintained for six months at two pHTs (8.1 and 7.2, by bubbling seawater with CO2). The lowest pH value was used to tackle how seawater pH impacts the carbon budget of a scleractinian coral. Rates of photosynthesis and respiration of the symbiotic association and of isolated symbionts were assessed at each pH. The fate of 13C photosynthates was then followed in the symbionts and the coral host for 48 h. Nubbins maintained at pHT 7.2 presented a lower areal symbiont concentration, and lower areal rates of gross photosynthesis and carbon incorporation compared to nubbins maintained at pHT 8.1. The total carbon acquisition was thus lower under low pH. However, the total percentage of carbon translocated to the host as well as the amount of carbon translocated per symbiont cell were significantly higher under pHT 7.2 than under pHT 8.1 (70% at pHT 7.2 vs. 60% at pHT 8.1), such that the total amount of photosynthetic carbon received by the coral host was equivalent under both pHs (5.5 to 6.1 µg C/cm**2/h). Although the carbon budget of the host was unchanged, symbionts acquired less carbon for their own needs (0.6 compared to 1.8 µg C/cm**2/h), explaining the overall decrease in symbiont concentration at low pH. In the long term, such decrease in symbiont concentration might severely affect the carbon budget of the symbiotic association.
Resumo:
The increasing pCO2 in seawater is a serious threat for marine calcifiers and alters the biogeochemistry of the ocean. Therefore, the reconstruction of past-seawater properties and their impact on marine ecosystems is an important way to investigate the underlying mechanisms and to better constrain the effects of possible changes in the future ocean. Cold-water coral (CWC) ecosystems are biodiversity hotspots. Living close to aragonite undersaturation, these corals serve as living laboratories as well as archives to reconstruct the boundary conditions of their calcification under the carbonate system of the ocean. We investigated the reef-building CWC Lophelia pertusa as a recorder of intermediate ocean seawater pH. This species-specific field calibration is based on a unique sample set of live in situ collected L. pertusa and corresponding seawater samples. These data demonstrate that uranium speciation and skeletal incorporation for azooxanthellate scleractinian CWCs is pH dependent and can be reconstructed with an uncertainty of ±0.15. Our Lophelia U / Ca-pH calibration appears to be controlled by the high pH values and thus highlighting the need for future coral and seawater sampling to refine this relationship. However, this study recommends L. pertusa as a new archive for the reconstruction of intermediate water mass pH and hence may help to constrain tipping points for ecosystem dynamics and evolutionary characteristics in a changing ocean.
Resumo:
Zinc chelates have been widely used to correct deficiencies in this micronutrient in different soil types and under different moisture conditions. The aging of the metal in soil could cause a change in its availability. Over time the most labile forms of Zn could decrease in activity and extractability and change to more stable forms. Various soil parameters, such as redox conditions, time, soil type and moisture conditions, affect the aging process and modify the solubility of the metal. In general, redox conditions influence pH and also the chemical forms dissolved in the soil solution. Soil pH also affects Zn solubility; at high pH values, most of the Zn is present in forms that are not bioavailable to plants. The objective of this study was to determine the changes in Zn over time in a soil solution in a waterlogged acidic soil to which synthetic and natural chelates were applied
Resumo:
Elongation rates of barley (Hordeum vulgare L. cv Hanna) leaves decreased with decreasing soil water content, whereas the pH of xylem sap increased from 5.9 to 6.9 over 6 d as the soil dried. The reduction in leaf-elongation rate (LER) was correlated with the increase in sap pH. Artificial sap buffered to different pH values was fed via the subcrown internode to derooted seedlings. Although leaves elongated at in planta rates when fed artificial sap at a well-watered pH of 6.0, LER declined with increasing sap pH. This effect persisted in the light and in the dark. pH had no effect on the relative water content or the bulk abscisic acid (ABA) concentration of the growing zone of these leaves. LERs of the ABA-deficient mutant Az34 were uniformly high over the pH range tested, whereas those of its isogenic wild-type cultivar Steptoe were reduced as the artificial sap pH was increased from 6.0 to 7.0. However, supplying a well-watered concentration of ABA (3 × 10−8 m) in the artificial xylem sap restored the pH response of the Az34 mutant. The results suggest that increased xylem sap pH acts as a drought signal to reduce LER via an ABA-dependent mechanism.
Resumo:
The hydrolysis of cell wall pectins by tomato (Lycopersicon esculentum) polygalacturonase (PG) in vitro is more extensive than the degradation affecting these polymers during ripening. We examined the hydrolysis of polygalacturonic acid and cell walls by PG isozyme 2 (PG2) under conditions widely adopted in the literature (pH 4.5 and containing Na+) and under conditions approximating the apoplastic environment of tomato fruit (pH 6.0 and K+ as the predominate cation). The pH optima for PG2 in the presence of K+ were 1.5 and 0.5 units higher for the hydrolysis of polygalacturonic acid and cell walls, respectively, compared with activity in the presence of Na+. Increasing K+ concentration stimulated pectin solubilization at pH 4.5 but had little influence at pH 6.0. Pectin depolymerization by PG2 was extensive at pH values from 4.0 to 5.0 and was further enhanced at high K+ levels. Oligomers were abundant products in in vitro reactions at pH 4.0 to 5.0, decreased sharply at pH 5.5, and were negligible at pH 6.0. EDTA stimulated PG-mediated pectin solubilization at pH 6.0 but did not promote oligomer production. Ca2+ suppressed PG-mediated pectin release at pH 4.5 yet had minimal influence on the proportional recovery of oligomers. Extensive pectin breakdown in processed tomato might be explained in part by cation- and low-pH-induced stimulation of PG and other wall-associated enzymes.
Resumo:
Under conditions (0.2% CO2; 1% O2) that allow high rates of photosynthesis, chlorophyll fluorescence was measured simultaneously with carbon assimilation at various light intensities in spinach (Spinacia oleracea) leaves. Using a stoichiometry of 3 ATP/CO2 and the known relationship between ATP synthesis rate and driving force (Delta pH), we calculated the light-dependent pH gradient (Delta pH) across the thylakoid membrane in intact leaves. These Delta pH values were correlated with the photochemical (qP) and nonphotochemical (qN) quenching of chlorophyll fluorescence and with the quantum yield of photosystem II (phiPSII). At Delta pH > 2.1 all three parameters (qP, qN, and phiPSII) changed very steeply with increasing DeltapH (decreasing pH in the thylakoid). The observed pH dependences followed hexacooperative titration curves with slightly different pKa values. The significance of the steep pH dependences with slightly different pKa values is discussed in relation to the regulation of photosynthetic electron transport in intact leaves.
Resumo:
Organelle acidification is an essential element of the endosomal-lysosomal pathway, but our understanding of the mechanisms underlying progression through this pathway has been hindered by the absence of adequate methods for quantifying intraorganelle pH. To address this problem in neurons, we developed a direct quantitative method for accurately determining the pH of endocytic organelles in live cells. In this report, we demonstrate that the ratiometric fluorescent pH indicator 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) is the most advantageous available probe for such pH measurements. To measure intraorganelle pH, cells were labeled by endocytic uptake of HPTS, the ratio of fluorescence emission intensities at excitation wavelengths of 450 nm and 405 nm (F450/405) was calculated for each organelle, and ratios were converted to pH values by using standard curves for F450/405 vs. pH. Proper calibration is critical for accurate measurement of pH values: standard curves generated in vitro yielded artifactually low organelle pH values. Calibration was unaffected by the use of culture medium buffered with various buffers or different cell types. By using this technique, we show that both acidic and neutral endocytically derived organelles exist in the axons of sympathetic neurons in different steady-state proportions than in the cell body. Furthermore, we demonstrate that these axonal organelles have a bimodal pH distribution, indicating a rapid acidification step in their maturation that reduces the average pH of a fraction of the organelles by 2 pH units while leaving few organelles of intermediate pH at steady state. Finally, we demonstrate a spatial gradient or organelle pH along axons, with the relative frequency of acidic organelles increasing with proximity to the cell body.
Resumo:
O objetivo deste estudo in vivo, internacional, randomizado e duplo cedo foi avaliar comparativamente a efetividade e o pH de diferentes géis clareadores na técnica de clareamento em consultório, com e sem o emprego de fonte de luz híbrida em função do grau de alteração de cor, sensibilidade e manutenção do tratamento ao longo de 12 meses de acompanhamento. Foram selecionados 48 voluntários de acordo com os critérios de inclusão e exclusão. Os pacientes foram divididos, de forma randomizada, em 4 grupos de 12 participantes cada, onde: Grupo EXP10 5 aplicações do gel de peróxido de hidrogênio a 10% (Gel Experimental DMC Equipamentos) e ativação de luz híbrida de LED (violeta)/Laser (Experimental DMC Equipamentos) com 7′ e 30″ por aplicação, com tempo total de 37′30; Grupo LP15 5 aplicações do gel de peróxido de hidrogênio 15% (Lase Peroxide Lite DMC Equipamentos) seguindo mesmo protocolo do grupo EXP10; Grupo TB35LH 3 aplicações do gel de peróxido de hidrogênio a 35% (Total Blanc Office - DFL) e ativação de luz híbrida de LED (azul)/Laser (Whitening Lase II DMC Equipamentos) de 7′ e 30″ por aplicação, com tempo total de 22′30″; Grupo TB35 3 aplicações do gel de peróxido de hidrogênio a 35% (Total Blanc Office - DFL) sem ativação com fonte de luz, totalizando 45″. A determinação dos valores de pH foi realizada com o peagômetro digital (Sentron Model 1001, Sentron) nos tempos inicial e após o término do protocolo clareador. A aferição da cor foi feita com espectofotômetro VITA Easyshade antes do clareamento, após 24 horas, 1 semana, 1, 6 e 12 meses. A sensibilidade dentária e grau de satisfação dos pacientes foram avaliados por meio do questionário VAS e IPS antes, imediatamente após o clareamento, 24 horas e uma semana após. Os resultados da alteração do pH receberam tratamento estatístico pela ANOVA e teste de Bonferroni a 0,05%. Os resultados indicaram que o pH aumentou do momento inicial para o final para todos os protocolos. Não houve diferenças significativas entre os protocolos TB35 e TB35LH em nenhum dos momentos, e o pH médio do grupo EXP10 foi maior em comparação aos outros três grupos nos dois momentos avaliados. Os resultados do ΔE receberam tratamento estatístico pela ANOVA e teste de Bonferroni a 0,05%. Os resultados indicaram que não houve diferença significativa entre os grupos LP15, TB35 e TB35LH. O ΔE médio observado após 24 horas foi estatisticamente maior que para os outros tempos (inicial, 1 semana, 1 mês, 6 e 12 meses). Para análise da sensibilidade foi construído um modelo linear misto e atribuídos postos (ranks) aos valores de Δ e teste de Bonferroni a 0,05% para comparações pareadas. Não houve diferença nos valores da sensibilidade imediatamente e 24 horas após o tratamento, com relação ao momento inicial. Houve diferença significativa entre Δ1 e Δ3 indicando que a sensação de dor após uma semana do tratamento foi menor do que as observadas nos instantes imediato e após 24 horas. Para os resultados de satisfação foi construído um modelo linear misto e atribuídos postos (ranks) e o Método de Bonferroni (0,05%) foi utilizado para as comparações pareadas do efeito de tempo. Os resultados indicam queda nos níveis de satisfação entre os períodos imediato e um ano e entre os períodos 24 horas e um ano. Todos os géis clareadores apresentaram mínima variação do pH nos tempos avaliados, entretanto houve um aumento do pH da primeira para a última aplicação em todos os grupos estudados e o grupo EXP10 apresentou os maiores valores de pH seguido do LP15, TB35LH e TB35 apresentaram os valores mais baixos de pH. Os grupos LP15, TB35 e TB35LH apresentaram menor variação da cor ao longo de 12 meses de acompanhamento. O efeito do protocolo clareador não influenciou a sensibilidade dos pacientes e após uma semana a sensibilidade retornaram aos níveis normais. O nível de satisfação dos pacientes foi significativo em relação ao tempo e não aos protocolos clareadores, os pacientes do grupo TB35 mostraram-se mais insatisfeitos ao longo da pesquisa.
Resumo:
Neste trabalho, foi investigado o efeito do tamanho do abrasivo e do pH do meio na resistência ao desgaste abrasivo do aço H-13 com matriz martensítica e do aço Hadfield com matriz austenítica. Ensaios de abrasão foram realizados utilizando o equipamento roda de borracha a úmido, variando o tamanho do abrasivo entre 0,15 e 2,40 mm e o pH do meio entre 5,5 e 12,8. As microestruturas dos materiais estudados foram analisadas utilizando microscopia óptica, as superfícies de desgaste e as partículas de desgaste foram analisadas em microscópio eletrônico de varredura. A macrodureza e a microdureza, antes e após os ensaios, foram obtidas utilizando durômetro Vickers. A topografia da região central da superfície de desgaste foi obtida utilizando Perfilometria 3D, visando obter valores de profundidade de penetração do abrasivo. Os resultados mostraram que o aço Hadfield é mais resistente do que o aço H-13 em todos os valores de pH e tamanhos de abrasivo utilizados. Para os dois materiais, a perda de massa aumenta linearmente até um tamanho crítico de abrasivo (TCA) e, após este, a mesma continua a aumentar, mas com uma intensidade menor. Para os dois materiais e para todos os tamanhos de abrasivo, o aumento do pH do meio resultou em menores perdas de massa, sendo este efeito maior para os dois menores tamanhos de abrasivo. Para maiores valores de pH, foram observadas menores profundidades de penetração do abrasivo. A microdureza da superfície de desgaste do aço H-13 sofreu um pequeno aumento com o aumento do tamanho do abrasivo enquanto que para o aço Hadfield esse aumento foi mais intenso. A análise das partículas de desgaste mostraram que, para todas as condições ensaiadas, os debris do aço H-13 tinham duas morfologias, contínuas e descontínuas enquanto que os cavacos do aço Hadfield foram sempre descontínuos. Para os dois materiais, foram observados dois micromecanismos de desgaste, sendo eles microcorte e microsulcamento. Por fim, os resultados apresentados neste trabalho sugerem que a análise de desempenho do aço Hadfield em serviço deve considerar o pH do meio bem como a granulometria do abrasivo em contato.