995 resultados para pH inhibition
Resumo:
Although monomeric Al species are often toxic in acidic soils, the effects of the aluminate ion (Al(OH)4-) on roots grown in alkaline media are still unclear. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of Al(OH)4- on root growth of mungbean (Vigna radiata L.). Root growth was reduced by 13 % after 3 d growth in solutions with an Al(OH)4- activity of 16 μM and no detectable polycationic Al (Al13). This decrease in root growth was associated with the formation of lesions on the root tips (due to the rupturing of the epidermal and outer cortical cells) and a slight limitation to root hair growth (particularly on the lateral roots). When roots displaying these symptoms were transferred to fresh Al(OH)4- solutions for a further 12 h, no root tip lesions were observed and root hair growth on the lateral roots improved. The symptoms were similar to those induced by Al13 at concentrations as low as 0.50 μM Al which are below the detection limit of the ferron method. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots.
Resumo:
Although it is well known that high Na concentrations induce Ca deficiency in acidic conditions, the effect of high pH on this competitive mechanism is not so well understood. The effect of Ca activity ratio (CAR) and pH on the Ca uptake of mungbeans (Vigna radiata (L.) Wilczek cv. Emerald) and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown not to affect the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. The similarity of critical values established for mungbeans and Rhodes grass in solution culture and soil justifies the use of both solution culture and soil solution measurement as techniques for studying plant growth and limitations across plant species.
Resumo:
The magnitude of a startle reflex is inhibited if the reflex-eliciting stimuli is preceded by a prepulse stimulus at a short lead interval. Previous research in humans has shown that the extent of prepulse inhibition decreases over repeated presentations of reflex stimuli and prepulse-reflex stimulus pairings. The present study (N=70) investigated the effect of repeated presentations of prepulse stimuli, reflex stimuli, or prepulse-reflex stimulus pairings on prepulse inhibition. Five groups of subjects were presented during habituation training with either (a) reflex stimuli, (b) prepulse-reflex stimulus pairings, (c) a random sequence of prepulse and reflex stimuli, (d) prepulse stimuli, or (e) experimentally irrelevant light stimuli. Prepulse inhibition was reduced if startle stimuli were presented during habituation ((a), (b), (c)), but not after repeated presentation of the prepulse or the light stimulus ((d), (e)). The reduction in prepulse inhibition was abolished after dishabituation of the startle reflex. The present results indicate that habituation of the startle reflex can result in a reduction of prepulse inhibition. (C) 1998 Elsevier Science B.V.
Resumo:
Albicidins are a family of phytotoxins and antibiotics which play an important role in the pathogenesis of sugarcane leaf scald disease. The albA gene from Klebsiella oxytoca encodes a protein which inactivates albicidin by heat-reversible binding. Albicidin ligand binding to a recombinant AlbA protein, purified by means of a glutathione S-transferase gene fusion system, is an almost instant and saturable reaction. Kinetic and stoichiometric analysis of the binding reaction indicated the presence of a single high affinity binding site with a dissociation constant of 6.4 x 10(-8) M. The AlbA-albicidin complex is stable from 4 to 40 degrees C, from ph 5 to 9 and in high salt solutions. Treatment with protein denaturants released all bound albicidin. These properties indicate that AlbA may be a useful affinity matrix for selective purification of albicidin antibiotics. AlbA does not bind to p-nitrophenyl butyrate or alpha-naphthyl butyrate, the substrates of the albicidin detoxification enzyme AlbD from Pantoea dispersa. The potential exists to pyramid genes for different mechanisms in transgenic plants to protect plastid DNA replication from inhibition by albicidins.
Resumo:
The testing of a 30-mer dG-rich phosphorothioate oligodeoxynucleotide (LG4PS) for effects on the behaviour of vascular smooth muscle cells (VSMC) in vitro and in vivo is described. LG4PS at 0.3 mu M inhibited significantly the phenotype modulation of freshly isolated rabbit VSMC, and cell outgrowth from pig aortic explants was inhibited similar to 80% by 5 mu M LG4PS. The growth of proliferating rabbit and pig VSMC was inhibited similar to 70% by 0.3 mu M and 5 mu M LG4PS, respectively. Though less marked, the antiproliferative effects of LG4PS on human VSMC were comparable to those obtained with heparin. The cytotoxic effects of LG4PS on VSMC in vitro were low. Despite these promising results, adventitial application of 2-200 nmol LG4PS in pluronic gel failed to reduce vascular hyperplasia in balloon-injured rabbit carotid arteries, and the highest dose caused extensive mortality. (C) 1997 Academic Press Limited.
Resumo:
The purpose of this study was to determine the relationship between ornithine decarboxylase activity (ODC; a marker for perturbed cell development), the blood alcohol level, and alcohol-induced microencephaly in the developing rat brain after binge treatment with ethanol vapour. By manipulating ethanol flow we were able to adjust vapour concentrations (24-65 mg ethanol/l air) such that an acute exposure of ethanol vapour for 3 h resulted in a range of blood alcohol levels (2.3-5.5 mg/ml). Acute studies showed that ethanol dose-dependently inhibited rat hippocampal and cerebellar ODC activity at PND4-PND10. There was a significant correlation between the blood alcohol level and degree of inhibition at all ages tested. Chronic treatment from PND4 to PND9 caused a significant decrease in both brain to body weight ratio and in hippocampal and cerebellar ODC activities at PND10. These results indicate that ethanol-induced disruption in ODC could play a significant role in ethanol's teratogenic effects during early postnatal development. (C) 1998 Elsevier Science Inc.
Resumo:
The effects of nitric oxide (NO) and other cysteine modifying agents were examined on cyclic nucleotide-gated (CNG) cation channels from rat olfactory receptor neurons. The NO compounds, S-nitroso-cysteine (SNC) and 3-morpholino-sydnonomine (SIN-1), did not activate the channels when applied for up to 10 min. The cysteine alkylating agent, N-ethylmaleimide (NEM), and the oxidising agent, dithionitrobensoate (DTNB), were also without agonist efficacy. Neither SNC nor DTNB altered the cAMP sensitivity of the channels. However, 2-min applications of SIN-1, SNC and DTNB inhibited the cAMP-gated current to approximately 50% of the control current level. This inhibition showed no spontaneous reversal for 5 min but was completely reversed by a 2-min exposure to DTT. The presence of cAMP protected the channels against NO-induced inhibition. These results indicate that inhibition is caused by S-nitrosylation of neighboring sulfhydryl groups leading to sulfhydryl bond formation. This reaction is favored in the closed channel state. Since recombinantly expressed rat olfactory alpha and beta CNG channel homomers and alpha/beta heteromers are activated and not inhibited by cysteine modification, the results of this study imply the existence of a novel subunit or tightly bound factor which dominates the effect of cysteine modification in the native channels. As CNG channels provide a pathway for calcum influx, the results may also have important implications for the physiological role of NO in mammalian olfactory receptor neurons.
Resumo:
Murine cytomegalovirus (CMV)-encoded protein m144 is homologous to class I MHC heavy-chain and is thought to regulate NK-cell-mediated immune responses in vivo. To examine the effects of m144 on Nh cytotoxicity in vitro, various cell lines were transfected with wild-type m144 or a chimeric construct in which the cytoplasmic domain of m144 was replaced with green fluorescence protein. Burkitt lymphoma line Raji expressed a significant level of m144 as determined by anti-m144 mAb binding or the green fluorescence of the fusion protein. The level of m144 expression was relatively low compared with that of transfected murine class I MHC Dd. However, m144 on Raji cells partially inhibited antibody-dependent cell-mediated cytotoxicity of IL-2-activated NK cells. NK cells from the CMV-susceptible BALB/c as well as those from the resistant C57BL/6 mice were inhibited by m144. Antibodies against the known murine NK inhibitory receptors Ly-49A, C, G, and I did not affect the inhibitory effect of m144. These results suggest that the murine CMV class I MHC homologue m144 partially inhibits MZ cells by interacting with a novel inhibitory receptor. (C) 1999 Academic Press.
Resumo:
The surfaces of non-geniculate coralline algae (NCA) are known to induce the settlement and metamorphosis of disparate marine taxa. In this study we investigate the responsiveness of larvae of Herdmania curvata (Ascidiacea: Stolidobranchia) to three species of NCA (Neo-goniolithon brassica-florida, Hydrolithon onkodes, and Lithothamnium prolifer) that cohabit the slope and crest of Heron Reef, Great Barrier Reef. H. curvata larvae were first exposed to these NCA at or within 2 h of hatching, which is 1 to 2 h prior to attaining competence, and then cultured continuously with the NCA for 12 to 14 h. Rates of settlement and metamorphosis of H, curvata cultured in laboratory chambers in the presence of the different NCA were significantly lower than spontaneous rates in seawater. The limited settlement in treatments containing NCA were confined entirely to the chamber periphery, and settlement never occurred on the surface of the NCA. The inhibitory effect was dose-dependent and was stronger in H. brassica-florida and H. onkodes than in L. prolifer. Larvae that did not settle in treatments with NCA had rounded anterior trunks and, in extreme cases, kinked tails with rounded and dissociated tail muscle cells. In some individuals, we observed the anterior chemosensory papillae being sloughed off the larval body. Morphological analysis of trunk ectodermal and mesenchymal nuclei of larvae cultured in the presence of the NCA revealed that general necrotic cell death was occurring. Importantly, H. curvata larvae that were exposed to NCA could not subsequently be induced to metamorphose in KCl-elevated seawater, whereas larvae not exposed to NCA metamorphosed at high rates in KCl-elevated seawater.
Resumo:
Long-term depression has recently been shown to occur at glutamatergic synapses in the avian hippocampus and requires activation of calcium/calmodulin-dependent protein kinase II in the nerve terminal. Here using whole cell and intracellular recordings from brain slices, we show that the N-type calcium channel contributes significantly to glutamate release in the avian hippocampus. Activation of the metabotrobic gamma-aminobutyric acid (GABA)(B) receptor by the specific agonist baclofen blocks synaptic transmission. The action of baclofen was associated with a change in paired pulse facilitation indicating that it resulted from a reduction in the probability of transmitter release, In contrast, no change in paired pulse facilitation was observed following the induction of long-term depression. These results show that activation of GABA(B) receptors and long-term depression reduce transmitter release by distinct mechanisms. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
This paper reviews the current understanding of the mechanisms of stress corrosion cracking of pipeline steels. The similarities, the differences and the influencing factors are considered for the high pH stress corrosion cracking caused by a concentrated bicarbonate-carbonate solution, and for the low pH stress corrosion cracking due to a diluter solution. For high pH stress corrosion cracking, it is well accepted that the mechanism involves anodic dissolution for crack initiation and propagation. In contrast, it has been suggested that the low pH stress corrosion cracking is associated with the dissolution of the crack tip and sides, accompanied by the ingress of hydrogen into the pipeline steel. But the precise influence of hydrogen on the mechanism needs to be further studied. (C) 2003 Kluwer Academic Publishers.