954 resultados para oxygen uptake slow component
Resumo:
Women’s handball is a sport, which has seen an accelerated development over the last decade. Data on movement patterns in combination with physiological demands are nearly nonexistent in the literature. The aim of this study was twofold: first, to analyze the horizontal movement pattern, including the sprint acceleration profiles, of individual female elite handball players and the corresponding heart rates (HRs) during a match and secondly to determine underlying correlations with individual aerobic performance. Players from one German First League team (n = 11) and the Norwegian National Team (n = 14) were studied during one match using the Sagit system for movement analysis and Polar HR monitoring for analysis of physiological demands. Mean HR during the match was 86 % of maximum HR (HRmax). With the exception of the goalkeepers (GKs, 78 % of HRmax), no position-specific differences could be detected. Total distance covered during the match was 4614 m (2066 m in GKs and 5251 m in field players (FPs)). Total distance consisted of 9.2 % sprinting, 26.7 % fast running, 28.8 % slow running, and 35.5 % walking. Mean velocity varied between 1.9 km/h (0.52 m/s) (GKs) and 4.2 km/h (1.17 m/s) (FPs, no position effect). Field players with a higher level of maximum oxygen uptake (V̇O2max) executed run activities with a higher velocity but comparable percentage of HRmax as compared to players with lower aerobic performance, independent of FP position. Acceleration profile depended on aerobic performance and the field player’s position. In conclusion, a high V̇O2max appears to be important in top-level international women’s handball. Sprint and endurance training should be conducted according to the specific demands of the player’s position.
Resumo:
Soft tissue engineering presents significant challenges compared to other tissue engineering disciplines such as bone, cartilage or skin engineering. The very high cell density in most soft tissues, often combined with large implant dimensions, means that the supply of oxygen is a critical factor in the success or failure of a soft tissue scaffold. A model is presented for oxygen diffusion in a 15-60 mm diameter dome-shaped scaffold fed by a blood vessel loop at its base. This model incorporates simple models for vascular growth, cell migration and the effect of cell density on the effective oxygen diffusivity. The model shows that the dynamic, homogeneous cell seeding method often employed in small-scale applications is not applicable in the case of larger scale scaffolds such as these. Instead, we propose the implantation of a small biopsy of tissue close to a blood supply within the scaffold as a technique more likely to be successful. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved.
A novel, dynamic, in vivo, non-contact method of measuring oxygen depletion rate of the anterior eye
Resumo:
Despite the importance of oxygen measurements, techniques have been limited by their invasive nature and small corneal area of assessment. The aim of this study was to assess a non-contact way of measuring oxygen uptake of the whole anterior eye.
Resumo:
For the investigation of organic carbon fluxes reaching the seafloor, oxygen microprofiles were measured at 145 sites in different sub-regions of the Southern Ocean. At eleven sites, an in situ oxygen microprofiler was deployed for the measurement of oxygen profiles and the calculation of organic carbon fluxes. At four sites, both in situ and ex situ data were determined for high latitudes. Based on this dataset as well as on previous published data, a relationship was established for the estimation of fluxes derived by ex situ measured O2 profiles. The fluxes of labile organic matter range from 0.5 to 37.1 mgC m**2/day. The high values determined by in situ measurements were observed in the Polar Front region (water depth of more than 4290 m) and are comparable to organic matter fluxes observed for high-productivity, upwelling areas like off West Africa. The oxygen penetration depth, which reflects the long-term organic matter flux to the sediment, was correlated with assemblages of key diatom species. In the Scotia Sea (~3000 m water depth), oxygen penetration depths of less than 15 cm were observed, indicating high benthic organic carbon fluxes. In contrast, the oxic zone extends down to several decimeters in abyssal sediments of the Weddell Sea and the southeastern South Atlantic. The regional pattern of organic carbon fluxes derived from micro-sensor data suggest that episodic and seasonal sedimentation pulses are important for the carbon supply to the seafloor of the deep Southern Ocean.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física