972 resultados para osteoclast differentiation factor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Study Design. An immunohistological study of surgical specimens of human intervertebral disc.Objective.To examine the presence of pleiotrophin in diseased or damaged intervertebral disc tissue and the association between its presence and the extent of tissue vascularization and innervation.Summary of Background Data. Increased levels of pleiotrophin, a growth and differentiation factor that is active in various pathophysiologic processes, including angiogenesis, has been associated with osteoarthritic changes of human articular cartilage. The association between pleiotrophin expression and pathologic conditions of the human intervertebral disc is unknown.Methods. Specimens of human lumbar intervertebral discs, obtained following surgical discectomy, were divided into 3 groups: nondegenerated discs (n = 7), degenerated discs (n = 6), and prolapsed discs (n = 11). Serial tissue sections of each specimen were immunostained to determine the presence of pleiotrophin, blood vessels (CD34-positive endothelial cells), and nerves (neurofilament 200 kDa [NF200]-positive nerve fibers).Results. Pleiotrophin immunoreactivity was seen in disc cells, endothelial cells, and in the extracellular matrix in most specimens of intervertebral disc but was most prevalent in vascularized tissue in prolapsed discs. There was a significant correlation between the presence of pleiotrophin-positive disc cells and that of CD34-positive blood vessels. NF200-positive nerves were seen in vascularized areas of more degenerated discs, but nerves did not appear to codistribute with blood vessels or pleiotrophin positivity in prolapsed discs.Conclusions. Pleiotrophin is present in pathologic human intervertebral discs, and its prevalence and distribution suggest that it may play a role in neovascularization of diseased or damaged disc tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Compreender as estratégias comunicacionais e simbólicas adotadas no desenvolvimento de rótulos das embalagens de vinho com foco em sua exposição no ponto de venda foi o objetivo geral deste trabalho. Foram abordados conceitos básicos sobre o universo do vinho e o imaginário a ele relacionado. O rótulo é o principal elemento de diferenciação neste produto, já que as garrafas de vinho são muito similares, sendo ele o responsável em persuadir o consumidor quando o produto está no ponto de venda. O rótulo é o componente “vendedor”, a “última chance” para motivar o consumidor a colocar o vinho em sua cesta de compras. A forma como este componente e seus conteúdos são desenvolvidos sob o ponto de vista gráfico e simbólico foi o objeto desta pesquisa qualitativa que utilizou como metodologia, referências bibliográficas e documentais nos dois primeiros capítulos. No terceiro capítulo, foi realizada uma análise de conteúdo gráfico e simbólico dos rótulos de uma amostragem intencional de vinhos. A seguir, foi aplicada uma pesquisa experimental empírica de alguns vinhos junto a degustadores para avaliar se a percepção e identificação dos rótulos podem gerar avaliações diferentes após uma primeira degustação "às cegas

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spondyloarthropathies (or Spondyloarthritides; SpAs) are a group of heterogeneous but genetically related inflammatory disorders in which ankylosing spondylitis (AS) is considered the prototypic form. Among the genes associated with AS, HLA-B27 allele has the strongest association although the cause is still not clear. Rats transgenic for the human HLA-B27 gene (B27 rats) develop a systemic inflammation mirroring the human SpA symptoms and thus provide a useful model to study the contribution of this MHC class I molecule in the disease development. Of particular interest was the observation of absence of arthritis in B27 rats grown in germ-free conditions and a recent theory suggests that microbial dysbiosis and gut inflammation might play a key role in initiating the HLA-B27-associated diseases. Studies in our laboratory have previously demonstrated that HLA-B27 expression alters the development of the myeloid compartment within the bone marrow (BM) in B27 rat and causes loss of a specific dendritic cell (DC) population involved in self-tolerance mechanisms within the gut. The aim of this thesis was to further analyse the myeloid compartment in B27 rats with a particular focus on the osteoclast progenitors and the bone phenotype and to link this to the gut inflammation. In addition, translational studies analysed peripheral monocyte/pre-osteoclasts in AS patients and teased apart the role of cytokines in in vitro human osteoclast differentiation. To understand the dynamics of the myeloid/monocyte compartment within the B27-associated inflammation, monocytes within the bloodstream and BM of B27 rats were characterised via flow cytometry and their ability to differentiate into osteoclast was assessed in vitro. Moreover, an antibiotic regime was used to reduce the B27 ileitis and to evaluate whether this could affect the migration, the phenotype, and the osteoclastogenic potential of B27 monocytes. B27 animals display a systemic and central increase of “inflammatory” CD43low MOs, which are the main contributors to osteoclastogenesis in vitro. Antibiotic treatment reduced ileitis and also reverted the B27 monocyte phenotype. This was also associated with the reduction of the previous described TNFα-enhancement of osteoclast differentiation from B27 BM precursors. These evidences support the idea that in genetically susceptible individuals inflammation in the gut might influence the myeloid compartment within the BM; in other terms, pre-emptively educate precursor cells to acquire specific phenotype end functions after being recruited into the tissue. This might explain the enhanced differentiation of osteoclast from B27 BM progenitors and thus the HLA-B27-associated bone loss. The data shown in this thesis suggest a link between the immunity within the gut and BM haematopoiesis. This provides an attractive and novel research prospective that could help not only to increase the understanding of the HLA-B27-associated aetiopathogenesis but also to unravel the cellular crosstalk that allows the mucosal immunity to program central cell differentiation. Human translational studies on monocyte subsets, cytokines and cytokine network in AS osteoclastogenesis evidenced altered osteoclast differentiation in the presence of IL-22 although no differences in the phenotype and functions of circulating CD14+ monocytes were observed. In addition, studies on the role of TNFα and TNFRs showed a dual role of this inflammatory cytokine in the human OC differentiation. In particular, the activation of TNFR1 in monocytes in early osteoclastogenesis inhibits OC differentiation while TNFα-biasing for TNFR2 on osteoclast precursors mediates the osteoclastogenic effect. Whether similar mechanisms are involved in the TNFα-mediated joint destruction in human rheumatic diseases needs further investigations. This could contribute to the development of novel and more specific anti-TNFα agents for the treatment of bone erosion. In conclusion, taken together my studies support the idea of a crosstalk between the periphery and the central system during the inflammatory response and provide new insights to the mechanisms behind the enhancement of osteoclastogenesis in B27-associated disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Existe una estrecha relación entre bienestar y escala urbana. Considerando una combinación ponderada de indicadores socioeconómicos y ambientales tenemos que las Aglomeraciones de Tamaño Intermedio (ATIS) grandes (entre 400.000 y 999.999 habitantes) poseen el mayor nivel de bienestar, seguidas por las ATIS medias (entre 50.000 y 399.999). Las ciudades grandes (más de un millón de habitantes) recientemente se ubican en un tercer escalón. Cruzando la escala urbana y la región se evidencian mejor estas diferencias. La mejor conjunción corresponde a las ATIS medias patagónicas, mientras que la peor es la que reúne a las ATIS medias del Nordeste Argentino (NEA). Es decir que, más allá de la jerarquía urbana como factor de diferenciación, también deben considerarse los contextos regionales para intentar dimensionar más ajustadamente las diferencias del bienestar en Argentina. ABSTRACT A very close relationship exists between well-being and urban scale. If we consider a weighted combination of socioeconomic and environmental indicators, we find that bigger middle-sized cities (ATIS in Spanish) of between 400,000 and 1,000,000 inhabitants have the highest level of well-being, followed by middle ATIS, or cities, of 50,000 to 400,000 in population. The largest cities, those with a population of more than 1,000,000 ranked third. However, these differences are better evidenced by crossing urban scale and region. In other words, beyond urban hierarchy as a differentiation factor, the regional context must also be considered to more accurately gage differences in well-being.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

OBJECTIVE To investigate the effects of interleukin-17A (IL-17A) on osteoclastogenesis in vitro. METHODS Bone marrow cells (BMCs) were isolated from the excised tibia and femora of wild-type C57BL/6J mice, and osteoblasts were obtained by sequential digestion of the calvariae of ddY, C57BL/6J, and granulocyte-macrophage colony-stimulating factor-knockout (GM-CSF(-/-)) mice. Monocultures of BMCs or cocultures of BMCs and osteoblasts were supplemented with or without 1,25-dihydroxyvitamin D(3)(1,25[OH](2)D(3)), recombinant human macrophage colony-stimulating factor (M-CSF), RANKL, and IL-17A. After 5-6 days, the cultures were fixed with 4% paraformaldehyde and subsequently stained for the osteoclast marker enzyme tartrate-resistant acid phosphatase (TRAP). Osteoprotegerin (OPG) and GM-CSF expression were measured by enzyme-linked immunosorbent assay, and transcripts for RANK and RANKL were detected by real-time polymerase chain reaction. RESULTS In both culture systems, IL-17A alone did not affect the development of osteoclasts. However, the addition of IL-17A plus 1,25(OH)(2)D(3) to cocultures inhibited early osteoclast development within the first 3 days of culture and induced release of GM-CSF into the culture supernatants. Furthermore, in cocultures of GM-CSF(-/-) mouse osteoblasts and wild-type mouse BMCs, IL-17A did not affect osteoclast development, corroborating the role of GM-CSF as the mediator of the observed inhibition of osteoclastogenesis by IL-17A. CONCLUSION These findings suggest that IL-17A interferes with the differentiation of osteoclast precursors by inducing the release of GM-CSF from osteoblasts.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

TNFalpha is known to stimulate the development and activity of osteoclasts and of bone resorption. The cytokine was found to mediate bone loss in conjunction with inflammatory diseases such as rheumatoid arthritis or chronic aseptic inflammation induced by wear particles from implants and was suggested to be a prerequisite for the loss of bone mass under estrogen deficiency. In the present study, the regulation of osteoclastogenesis by TNFalpha was investigated in co-cultures of osteoblasts and bone marrow or spleen cells and in cultures of bone marrow and spleen cells grown with CSF-1 and RANKL. Low concentrations of TNFalpha (1 ng/ml) caused a >90% decrease in the number of osteoclasts in co-cultures, but did not affect the development of osteoclasts from bone marrow cells. In cultures with p55TNFR(-/-) osteoblasts and wt BMC, the inhibitory effect was abrogated and TNFalpha induced an increase in the number of osteoclasts in a dose-dependent manner. Osteoblasts were found to release the inhibitory factor(s) into the culture supernatant after simultaneous treatment with 1,25(OH)(2)D(3) and TNFalpha, this activity, but not its release, being resistant to treatment with anti-TNFalpha antibodies. Dexamethasone blocked the secretion of the TNFalpha-dependent inhibitor by osteoblasts, while stimulating the development of osteoclasts. The data suggest that the effects of TNFalpha on the differentiation of osteoclast lineage cells and on bone metabolism may be more complex than hitherto assumed and that these effects may play a role in vivo during therapies for inflammatory diseases.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Osteoclasts originate from the hematopoietic stem cell and share a differentiation pathway with the cells of the monocyte/macrophage lineages. Development and activation of osteoclasts, and as a consequence regulation of bone resorption, depend on two growth factors: macrophage colony-stimulating factor and receptor activator of NF-κB ligand. Furthermore, cell development and activity are modulated by a microenvironment composed of cytokines and growth factors and of the extracellular matrix. Membrane transporters are a means for cells to interact with their environment. Within this study, the expression of proteins regulating cellular iron homeostasis in osteoclast-like cells grown from bone marrow-derived progenitors was compared to the expression of this set of proteins by monocyte/macrophage lineage cells. In differentiating osteoclasts, levels of transcripts encoding transferrin receptor 1 and divalent metal transporter 1 (Slc11A2) were increased, while levels of transcripts encoding ferroportin (Slc40A1) and natural resistance-associated macrophage protein 1 (Slc11A1) were decreased. Supplementation of the culture media with exogenous iron led to an increase in the proliferation of osteoclast progenitor cells and to the expression of a macrophage-like phenotype, while the development of osteoclasts was reduced. Upon transfer of mature OC onto a CaP substrate, iron depletion of the medium with the Fe(3+)-chelator Deferoxamine Mesylate decreased CaP dissolution by ~30 %, which could be restored by addition of exogenous iron. During the 24 h of the assay, no effects were observed on total TRAP activity. The data demonstrate transcriptional regulation of the components of cellular iron transporters during OC development and suggests that iron homeostasis may contribute to fine-tuning of the RANKL-induced OC development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanisms involved in the control of embryonic stem (ES) cell differentiation are yet to be fully elucidated. However, it has become clear that the family of fibroblast growth factors (FGFs) are centrally involved. In this study we examined the role of the FGF receptors (FGFRs 1-4) during osteogenesis in murine ES cells. Single cells were obtained after the formation of embryoid bodies, cultured on gelatin-coated plates, and coaxed to differentiate along the osteogenic lineage. Upregulation of genes was analyzed at both the transcript and protein levels using gene array, relative-quantitative PCR (RQ-PCR), and Western blotting. Deposition of a mineralized matrix was evaluated with Alizarin Red staining. An FGFR1-specific antibody was generated and used to block FGFR1 activity in mES cells during osteogenic differentiation. Upon induction of osteogenic differentiation in mES cells, all four FGFRs were clearly upregulated at both the transcript and protein levels with a number of genes known to be involved in osteogenic differentiation including bone morphogenetic proteins (BMPs), collagen I, and Runx2. Cells were also capable of depositing a mineralized matrix, confirming the commitment of these cells to the osteogenic lineage. When FGFR1 activity was blocked, a reduction in cell proliferation and a coincident upregulation of Runx2 with enhanced mineralization of cultures was observed. These results indicate that FGFRs play critical roles in cell recruitment and differentiation during the process of osteogenesis in mES cells. In particular, the data indicate that FGFR1 plays a pivotal role in osteoblast lineage determination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The juvenile sea squirt wanders through the sea searching for a suitable rock or hunk of coral to cling to and make its home for life. For this task it has a rudimentary nervous system. When it finds its spot and takes root, it doesn't need its brain any more so it eats it. It's rather like getting tenure. Daniel C. Dennett (from Consciousness Explained, 1991) The little sea squirt needs its brain for a task that is very simple and short. When the task is completed, the sea squirt starts a new life in a vegetative state, after having a nourishing meal. The little brain is more tightly structured than our massive primate brains. The number of neurons is exact, no leeway in neural proliferation is tolerated. Each neuroblast migrates exactly to the correct position, and only a certain number of connections with the right companions is allowed. In comparison, growth of a mammalian brain is a merry mess. The reason is obvious: Squirt brain needs to perform only a few, predictable functions, before becoming waste. The more mobile and complex mammals engage their brains in tasks requiring quick adaptation and plasticity in a constantly changing environment. Although the regulation of nervous system development varies between species, many regulatory elements remain the same. For example, all multicellular animals possess a collection of proteoglycans (PG); proteins with attached, complex sugar chains called glycosaminoglycans (GAG). In development, PGs participate in the organization of the animal body, like in the construction of parts of the nervous system. The PGs capture water with their GAG chains, forming a biochemically active gel at the surface of the cell, and in the extracellular matrix (ECM). In the nervous system, this gel traps inside it different molecules: growth factors and ECM-associated proteins. They regulate the proliferation of neural stem cells (NSC), guide the migration of neurons, and coordinate the formation of neuronal connections. In this work I have followed the role of two molecules contributing to the complexity of mammalian brain development. N-syndecan is a transmembrane heparan sulfate proteoglycan (HSPG) with cell signaling functions. Heparin-binding growth-associated molecule (HB-GAM) is an ECM-associated protein with high expression in the perinatal nervous system, and high affinity to HS and heparin. N-syndecan is a receptor for several growth factors and for HB-GAM. HB-GAM induces specific signaling via N-syndecan, activating c-Src, calcium/calmodulin-dependent serine protein kinase (CASK) and cortactin. By studying the gene knockouts of HB-GAM and N-syndecan in mice, I have found that HB-GAM and N-syndecan are involved as a receptor-ligand-pair in neural migration and differentiation. HB-GAM competes with the growth factors fibriblast growth factor (FGF)-2 and heparin-binding epidermal growth factor (HB-EGF) in HS-binding, causing NSCs to stop proliferation and to differentiate, and affects HB-EGF-induced EGF receptor (EGFR) signaling in neural cells during migration. N-syndecan signaling affects the motility of young neurons, by boosting EGFR-mediated cell migration. In addition, these two receptors form a complex at the surface of the neurons, probably creating a motility-regulating structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insulin-like growth factor-binding protein (IGFBP)-3 is the major insulin-like growth factor (IGF) carrier protein in the bloodstream. IGFBP-3 prolongs the half-life of circulating IGFs and prevents their potential hypo-glycemic effect. IGFBP-3 is also expressed in many peripheral tissues in fetal and adult stages. In vitro, IGFBP-3 can inhibit or potentiate IGF actions and even possesses IGF-independent activities, suggesting that local IGFBP-3 may also have paracrine/autocrine function(s). The in vivo function of IGFBP-3, however, is unclear. In this study, we elucidate the developmental role of IGFBP-3 using the zebrafish model. IGFBP-3 mRNA expression is first detected in the migrating cranial neural crest cells and subsequently in pharyngeal arches in zebrafish embryos. IGFBP-3 mRNA is also persistently expressed in the developing inner ears. To determine the role of IGFBP-3 in these tissues, we ablated the IGFBP-3 gene product using morpholino-modified antisense oligonucleotides (MOs). The IGFBP-3 knocked down embryos had delayed pharyngeal skeleton morphogenesis and greatly reduced pharyngeal cartilage differentiation. Knockdown of IGFBP-3 also significantly decreased inner ear size and disrupted hair cell differentiation and semicircular canal formation. Furthermore, reintroduction of a MO-resistant form of IGFBP-3 "rescued" the MO-induced defects. These findings suggest that IGFBP-3 plays an important role in regulating pharyngeal cartilage and inner car development and growth in zebrafish.