853 resultados para orthogonal frequency division multiplexing (OFDM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modern electronic nonlinearity equalizer (NLE) based on inverse Volterra series transfer function (IVSTF) with reduced complexity is applied on coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals for next-generation long- and ultra-long-haul applications. The OFDM inter-subcarrier crosstalk effects are explored thoroughly using the IVSTF-NLE and compared with the case of linear equalization (LE) for transmission distances of up to 7000 km. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major drawback of coherent optical orthogonal frequency-division multiplexing (CO-OFDM) that hitherto remains unsolved is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Several digital signal processing techniques have been investigated for the compensation of fiber nonlinearities, e.g., digital back-propagation, nonlinear pre- and post-compensation and nonlinear equalizers (NLEs) based on the inverse Volterra-series transfer function (IVSTF). Alternatively, nonlinearities can be mitigated using nonlinear decision classifiers such as artificial neural networks (ANNs) based on a multilayer perceptron. In this paper, ANN-NLE is presented for a 16QAM CO-OFDM system. The capability of the proposed approach to compensate the fiber nonlinearities is numerically demonstrated for up to 100-Gb/s and over 1000km and compared to the benchmark IVSTF-NLE. Results show that in terms of Q-factor, for 100-Gb/s at 1000km of transmission, ANN-NLE outperforms linear equalization and IVSTF-NLE by 3.2dB and 1dB, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally demonstrate ∼2 dB quality (Q)-factor enhancement in terms of fiber nonlinearity compensation of 40 Gb/s 16 quadrature amplitude modulation coherent optical orthogonal frequency-division multiplexing at 2000 km, using a nonlinear equalizer (NLE) based on artificial neural networks (ANN). Nonlinearity alleviation depends on escalation of the ANN training overhead and the signal bit rate, reporting ∼4 dB Q-factor enhancement at 70 Gb/s, whereas a reduction of the number of ANN neurons annihilates the NLE performance. An enhanced performance by up to ∼2 dB in Q-factor compared to the inverse Volterra-series transfer function NLE leads to a breakthrough in the efficiency of ANN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel versatile digital signal processing (DSP)-based equalizer using support vector machine regression (SVR) is proposed for 16-quadrature amplitude modulated (16-QAM) coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and experimentally compared to traditional DSP-based deterministic fiber-induced nonlinearity equalizers (NLEs), namely the full-field digital back-propagation (DBP) and the inverse Volterra series transfer function-based NLE (V-NLE). For a 40 Gb/s 16-QAM CO-OFDM at 2000 km, SVR-NLE extends the optimum launched optical power (LOP) by 4 dB compared to V-NLE by means of reduction of fiber nonlinearity. In comparison to full-field DBP at a LOP of 6 dBm, SVR-NLE outperforms by ∼1 dB in Q-factor. In addition, SVR-NLE is the most computational efficient DSP-NLE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has been actively considered as a potential candidate for long-haul transmission and 400 Gb/s to 1 Tb/s Ethernet transport because of its high spectral efficiency, efficient implementation, flexibility and robustness against linear impairments such as chromatic dispersion and polarization mode dispersion. However, due to the long symbol duration and narrow subcarrier spacing, CO-OFDM systems are sensitive to laser phase noise and fibre nonlinearity induced penalties. As a result, the development of CO-OFDM transmission technology crucially relies on efficient techniques to compensate for the laser phase noise and fibre nonlinearity impairments. In this thesis, high performance and low complexity digital signal processing techniques for laser phase noise and fibre nonlinearity compensation in CO-OFDM transmissions are demonstrated. For laser phase noise compensation, three novel techniques, namely quasipilot-aided, decision-directed-free blind and multiplier-free blind are introduced. For fibre nonlinear compensation, two novel techniques which are referred to as phase conjugated pilots and phase conjugated subcarrier coding, are proposed. All these abovementioned digital signal processing techniques offer high performances and flexibilities while requiring relatively low complexities in comparison with other existing phase noise and nonlinear compensation techniques. As a result of the developments of these digital signal processing techniques, CO-OFDM technology is expected to play a significant role in future ultra-high capacity optical network. In addition, this thesis also presents preliminary study on nonlinear Fourier transform based transmission schemes in which OFDM is a highly suitable modulation format. The obtained result paves the way towards a truly flexible nonlinear wave-division multiplexing system that allows the current nonlinear transmission limitations to be exceeded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel low-complexity artificial neural network (ANN)-based nonlinear equalizer (NLE) for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and compare it with the recent inverse Volterra-series transfer function (IVSTF)-based NLE over up to 1000 km of uncompensated links. Demonstration of ANN-NLE at 80-Gb/s CO-OFDM using 16-quadrature amplitude modulation reveals a Q-factor improvement after 1000-km transmission of 3 and 1 dB with respect to the linear equalization and IVSTF-NLE, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss in detail the performance of different blind phase noise estimation schemes for coherent optical orthogonal frequency-division multiplexing transmissions. We first derive a general model of such systems with phase noise. Based on this model, the phase cycle slip probability in blind phase noise estimation is calculated. For blind phase tracking, we present and discuss the implementation of feedback loop and digital phase tracking. We then analyze in detail the performance of a decision-direct-free blind scheme, in which only three test phases are required for phase noise compensation. We show that the decision-direct-free blind scheme is transparent to QAM formats, and can provide a similar performance to the conventional blind phase search employing 16 test phases. We also propose two novel cost functions to further reduce the complexity of this scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to investigate two candidate waveforms for next generation wireless systems, filtered Orthogonal Frequency Division Multiplexing (f-OFDM) and Unified Filtered Multi-Carrier (UFMC). The evaluation is done based on the power spectral density analysis of the signal and performance measurements in synchronous and asynchronous transmission. In f-OFDM we implement a soft truncated filter with length 1/3 of OFDM symbol. In UFMC we use the Dolph-Chebyshev filter, limited to the length of zero padding (ZP). The simulation results demonstrates that both waveforms have a better spectral behaviour compared with conventional OFDM. However, the induced inter-symbol interference (ISI) caused by the filter in f-OFDM, and the inter-carrier interference (ICI) induced in UFMC due to cyclic prefix (CP) reduction , should be kept under control. In addition, in a synchronous transmission case with ideal parameters, f-OFDM and UFMC appear to have similar performance with OFDM. When carrier frequency offset (CFO) is imposed in the transmission, UFMC outperforms OFDM and f-OFDM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the results of the time dispersion parameters obtained from a set of channel measurements conducted in various environments that are typical of multiuser Infostation application scenarios are presented. The measurement procedure takes into account the practical scenarios typical of the positions and movements of the users in the particular Infostation network. To provide one with the knowledge of how much data can be downloaded by users over a given time and mobile speed, data transfer analysis for multiband orthogonal frequency division multiplexing (MB-OFDM) is presented. As expected, the rough estimate of simultaneous data transfer in a multiuser Infostation scenario indicates dependency of the percentage of download on the data size, number and speed of the users, and the elapse time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a wireless relay network with one source, one relay and one destination, where communications between nodes are preformed over N orthogonal channels. This, for example, is the case when orthogonal frequency division multiplexing is employed for data communications. Since the power available at the source and relay is limited, we study optimal power allocation strategies at the source and relay in order to maximize the overall source-destination capacity. Depending on the availability of the channel state information at both the source and relay or only at the relay, power allocation is performed at both the source and relay or only at the relay. Considering different setups for the problem, various optimization problems are formulated and solved. Some properties of the optimal solution are also proved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MC-CDMA (MultiCarrier Code Division Multiple Access), currently regarded as a promissing multiple access scheme for broadband communications, is known to combine the advantages of an OFDM-based (Orthogonal Frequency Division Multiplexing), CP-assisted (Cyclic Prefix) block transmission with those of CDMA systems. Recently, it was recognised that DS-CDMA (Direct Sequence) implementations can also take advantage of the beneficts of the CP-assisted block transmission approach, therefore enabling an efficient use of FFT-based (Fast Fourier Transform), chip level FDE (Frequency- Domain Equalisation) techniques. In this paper we consider the use of IB-DFE (Iterative Block Decision Feedback Equalisation) FDE techniques within both CP-assisted MC-CDMA systems with frequency-domain spreading and DS-CDMA systems. Our simulation results show that an IB-DFE receiver with moderate complexity is suitable in both cases, with excellent performances that can be close to the single-code matched filter bound (especially for the CP-assisted DSCDMA alternative), even with full code usage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual Carrier Modulation (DCM) is currently used as the higher data rate modulation scheme for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the user’s experience of these products. In this paper, Log Likelihood Ratio (LLR) demapping method is used for the DCM demaper implemented in fixed point model. Channel State Information (CSI) aided scheme coupled with the band hopping information is used as the further technique to improve the DCM demapping performance. The receiver performance for the fixed point DCM is simulated in realistic multi-path environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual Carrier Modulation (DCM) was chosen as the higher data rate modulation scheme for MB-OFDM (Multiband Orthogonal Frequency Division Multiplexing) in the UWB (Ultra-Wide Band) radio platform ECMA-368. ECMA-368 has been chosen as the physical implementation for high data rate Wireless USB (W-USB) and Bluetooth 3.0. In this paper, different demapping methods for the DCM demapper are presented, being Soft Bit, Maximum Likely (ML) Soft Bit and Log Likelihood Ratio (LLR). Frequency diversity and Channel State Information (CSI) are further techniques to enhance demapping methods. The system performance for those DCM demapping methods simulated in realistic multi-path environments are provided and compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work treats of an implementation OFDMA baseband processor in hardware for LTE Downlink. The LTE or Long Term Evolution consist the last stage of development of the technology called 3G (Mobile System Third Generation) which offers an increasing in data rate and more efficiency and flexibility in transmission with application of advanced antennas and multiple carriers techniques. This technology applies in your physical layer the OFDMA technical (Orthogonal Frequency Division Multiple Access) for generation of signals and mapping of physical resources in downlink and has as base theoretical to OFDM multiple carriers technique (Orthogonal Frequency Division Multiplexing). With recent completion of LTE specifications, different hardware solutions have been developed, mainly, to the level symbol processing where the implementation of OFDMA processor in base band is commonly considered, because it is also considered a basic architecture of others important applications. For implementation of processor, the reconfigurable hardware offered by devices as FPGA are considered which shares not only to meet the high requirements of flexibility and adaptability of LTE as well as offers possibility of an implementation quick and efficient. The implementation of processor in reconfigurable hardware meets the specifications of LTE physical layer as well as have the flexibility necessary for to meet others standards and application which use OFDMA processor as basic architecture for your systems. The results obtained through of simulation and verification functional system approval the functionality and flexibility of processor implemented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tese apresenta duas contribuições distintas na área de sistemas de comunicações sem fi o. Primeiro, é apresentada uma formulação analítica para a análise de desempenho de sistemas utilizando multiplexação multibanda por divisão ortogonal na frequência (MB-OFDM, do inglês Multi-Band Orthogonal Frequency-Division Multiplexing ) com um ltro notch para mitigar a interferência em banda estreita causada por outros sistemas que operam dentro da faixa de frequências alocada para sistemas UWB. Em seguida, um novo front end para classificação automática de modulações com o uso de aprendizado discriminativo é proposto. Esse front end pode ser utilizado por qualquer classi cador discriminativo e consiste em ordenar magnitude e fase do símbolos recebidos. Os resultados obtidos pelo classi cador proposto mostraram-se competitivos com outros algoritmos já existentes na literatura.