968 resultados para opto-electronic materials
Resumo:
The wettability of newly developed Sn-2.8Ag-0.5Cu-1.0Bi lead-free solder on Cu and Ni substrates was assessed through the wetting balance tests. The wettability assessment parameters such as contact angle (ϑc) and maximum wetting force (Fw) were documented for three solder bath temperatures with three commercial fluxes, namely, no-clean (NC), nonactivated (R), and water-soluble organic acid flux (WS). It was found that the lead-free Sn-2.8Ag-0.5Cu-1.0Bi solder exhibited less wetting force, i.e., poorer wettability, than the conventional Sn-37Pb solder for all flux types and solder bath temperatures. The wettability of Sn-2.8Ag-0.5Cu-1.0Bi lead-free solder on Cu substrate was much higher than that on Ni substrate. Nonwetting for Sn-2.8Ag-0.5Cu-1.0Bi and Sn-Pb solders on Ni substrate occurred when R-type flux was used. A model was built and simulations were performed for the wetting balance test. The simulation results were found very close to the experimental results. It was also observed that larger values of immersion depth resulted in a decrease of the wetting force and corresponding meniscus height, whereas the increase in substrate perimeter enhanced the wettability. The wetting reactions between the solder and Cu/Ni substrates were also investigated, and it was found that Cu atoms diffused into the solder through the intermetallic compounds (IMCs) much faster than did the Ni atoms. Rapid formation of IMCs inhibited the wettability of Sn-2.8Ag-0.5Cu-1.0Bi solder compared to the Sn-Pb solder.
Resumo:
Active matrix liquid crystal displays (AMLCD) need to be protected in severe environments. This is achieved through a ruggedisation process, where the display is laminated with cover glasses to become a more robust structure. The ruggedisation process can in itself cause stresses in the display and this can lead to delamination failures during the lamination process, during qualification testing or in-service. Controlling the magnitude of stress in a display during the lamination process is of course very important and this depends highly on the materials used. This paper discusses the use of finite element analysis to investigate the use of different materials in the lamination process and how such materials can affect the stress magnitude in the display.
Resumo:
Flexible Circuit Boards (FPCs) are now being widely used in the electronic industries especially in the areas of electronic packages. Due to European lead-free legislation which has been implemented since July 2006, electronic packaging industries have to switch to use in the lead-free soldering technology. This change has posed a number of challenges in terms of development of lead-free solders and compatible substrates. An increase of at least 20-50 degrees in the reflow temperature is a concern and substantial research is required to investigate a sustainable design of flexible circuit boards as carrier substrates. This paper investigates a number of design variables such as copper conductor width, type of substrate materials, effect of insulating materials, etc. Computer modeling has been used to investigate thermo-mechanical behavior, and reliability, of flexible substrates after they have been subjected to a lead- free solder processing. Results will show particular designs that behave better for a particular rise in peak reflow temperature. Also presented will be the types of failures that can occur in these substrates and what particular materials are more reliable.
Resumo:
There are increasing demands on the power density and efficiency of DC-DC power converters due to the soaring functionality and operational longevity required for today's electronic products. In addition, DC-DC converters are required to operate at new elevated frequencies in the MHz frequency regime. Typical ferrite cores, whose useable flux density falls drastically at these frequencies, have to be replaced and a method of producing compact component windings developed. In this study, two types of microinductors, pot-core and solenoid, for DC-DC converter applications have been analyzed for their performance in the MHz frequency range. The inductors were manufactured using an adapted UV-LIGA process and included electrodeposited nickel-iron and the commercial alloy Vitrovac 6025 as core materials. Using a vibrating sample magnetometer (VSM) and a Hewlett Packard 4192A LF- impedance analyzer, the inductor characteristics such as power density, efficiency, inductance and Q-factor were recorded. Experimental, finite element and analytical results were used to assess the suitability of the magnetic materials and component geometries for low MHz operation.
Resumo:
Heterojunction diodes of n-type ZnO/p-type silicon (100) were fabricated by 12 pulsed laser deposition of ZnO films on p-Si substrates in oxygen ambient at 13 different pressures. These heterojunctions were found to be rectifying with a 14 maximum forward-to-reverse current ratio of about 1,000 in the applied 15 voltage range of -5 V to +5 V. The turn-on voltage of the heterojunctions was 16 found to depend on the ambient oxygen pressure during the growth of the ZnO 17 film. The current density–voltage characteristics and the variation of the 18 series resistance of the n-ZnO/p-Si heterojunctions were found to be in line 19 with the Anderson model and Burstein-Moss (BM) shift.
Resumo:
Aim of the present work was to automate CSP process, to deposit and characterize CuInS2/In2S3 layers using this system and to fabricate devices using these films.An automated spray system for the deposition of compound semiconductor thin films was designed and developed so as to eliminate the manual labour involved in spraying and facilitate standardization of the method. The system was designed such that parameters like spray rate, movement of spray head, duration of spray, temperature of substrate, pressure of carrier gas and height of the spray head from the substrate could be varied. Using this system, binary, ternary as well as quaternary films could be successfully deposited.The second part of the work deal with deposition and characterization of CuInS2 and In2S3 layers respectively.In the case of CuInS2 absorbers, the effects of different preparation conditions and post deposition treatments on the optoelectronic, morphological and structural properties were investigated. It was observed that preparation conditions and post deposition treatments played crucial role in controlling the properties of the films. The studies in this direction were useful in understanding how the variation in spray parameters tailored the properties of the absorber layer. These results were subsequently made use of in device fabrication process.Effects of copper incorporation in In2S3 films were investigated to find how the diffusion of Cu from CuInS2 to In2S3 will affect the properties at the junction. It was noticed that there was a regular variation in the opto-electronic properties with increase in copper concentration.Devices were fabricated on ITO coated glass using CuInS2 as absorber and In2S3 as buffer layer with silver as the top electrode. Stable devices could be deposited over an area of 0.25 cm2, even though the efficiency obtained was not high. Using manual spray system, we could achieve devices of area 0.01 cm2 only. Thus automation helped in obtaining repeatable results over larger areas than those obtained while using the manual unit. Silver diffusion on the cells before coating the electrodes resulted in better collection of carriers.From this work it was seen CuInS2/In2S3 junction deposited through automated spray process has potential to achieve high efficiencies.
Resumo:
The present thesis can be divided into three areas:1) the fabrication of a low temperature photo-luminescence and photoconductivity measuring unit 2) photo-luminescence in the chalcopyrite CulnSez and CulnS2 system for defect and composition analysis and 3) photo-luminescence and photo-conductivity of In:JS3. This thesis shows that photo-luminescence is one of most essential semiconductor characterization tool for a scientific group working on photovoltaics. Tools which can be robust, non-destructive, requiring minimal sample preparation for analysis and most informative of the device applications are sought after by industries and this thesis is towards establishing photo-luminescence as "THE" tool for semiconductor characterization. The possible application of photo-luminescence as a tool for compositional and quality analysis of semiconductor thin films has been worked upon by this thesis. Photo-conductivity complement photo-luminescence and together they provide all the information required for the fabrication of an opto-electronic device.
Resumo:
Over the past years there has been considerable interest in the growth of single crystals both from the point of view of basic research and technological application. With the revolutionary emergence of solid state electronics which is based on single crystal technolo8Ys basic and applied studies on crystal growth and characterization _have gained a-more significant role in material science. These studies are being carried out for single crystals not only of semiconductor and other electronic materials but also of metals and insulators. Many organic crystals belonging to the orthorhombic class exhibit ferroelectric, electrooptic, triboluminescent and piezoelectric properties. Diammonium Hydrogen Citrate (DAHC) crystals are reported to be piezoelectric and triboluminescent /1/. Koptsik et al. /2/ have reported the piezoelectric nature of Citric Acid Monohydrate (CA) crystals. And since not much work has been done on these crystals, it has been thought useful to grow and characterize these crystals. This thesis presents a study of the growth of these crystals from solution and their defect structures. The results of the microindentation and thermal analysis are presented. Dielectric, fractographic, infrared (IR) and ultraviolet (UV) studies of DAHC crystals are also reported
Resumo:
Das Handling digitaler Informationen und ihre Integration in bestehende Bibliotheksdienstleistungen sind heutzutage eine der wichtigsten Aufgaben von Bibliotheken. Am Beispiel der Bibliothek der Gesamthochschule Kassel wird gezeigt, wie die entwickelten Lösungen von den organisatorischen, funktionalen und baulichen Gegebenheiten beeinflußt worden sind. Beschrieben werden zudem die technische Plattformen sowie das Zusammenwirken unterschiedlicher Dienste bis hin zum Aufbau eines eigenen Verlages für elektronische Publikationen.