967 resultados para optimized


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing number of space debris in operating regions around the earth constitutes a real threat to space missions. The goal of the research is to establish appropriate scientific-technological conditions to prevent the destruction and/or impracticability of spacecraft in imminent collision in these regions. A definitive solution to this problem has not yet been reached with the degree of precision that the dynamics of spatial objects (vehicle and debris) requires mainly due to the fact that collisions occur in chains and fragmentation of these objects in the space environment. This fact threatens the space missions on time and with no prospects for a solution in the near future. We present an optimization process in finding the initial conditions (CIC) to collisions, considering the symmetry of the distributions of maximum relative positions between spatial objects with respect to the spherical angles. For this, we used the equations of the dynamics on the Clohessy-Witshire, representing a limit of validation that is highly computationally costly. We simulate different maximum relative positions values of the corresponding initial conditions given in terms of spherical angles. Our results showed that there are symmetries that significantly reduce operating costs, such that the search of the CIC is advantageously carried out up to 4 times the initial processing routine. Knowledge of CIC allows the propulsion system operating vehicle implement evasive maneuvers before impending collisions with space debris.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimized δ-expansion is used to study vacuum polarization effects in the Walecka model. The optimized δ-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. Vacuum effects on self-energies and the energy density of nuclear matter are studied up to script O sign(δ2). When exchange diagrams are neglected, the traditional relativistic Hartree approximation (RHA) results are exactly reproduced and, using the same set of parameters that saturate nuclear matter in the RHA, a new stable, tightly bound state at high density is found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimized delta-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. This technique is discussed in the lambda phi(4) model and then implemented in the Walecka model for the equation of state of nuclear matter. The results obtained with the delta expansion are compared with those obtained with the traditional mean field, relativistic Hartree and Hartree-Fock approximations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Current recommendations for antithrombotic therapy after drug-eluting stent (DES) implantation include prolonged dual antiplatelet therapy (DAPT) with aspirin and clopidogrel >= 12 months. However, the impact of such a regimen for all patients receiving any DES system remains unclear based on scientific evidence available to date. Also, several other shortcomings have been identified with prolonged DAPT, including bleeding complications, compliance, and cost. The second-generation Endeavor zotarolimus-eluting stent (E-ZES) has demonstrated efficacy and safety, despite short duration DAPT (3 months) in the majority of studies. Still, the safety and clinical impact of short-term DAPT with E-ZES in the real world is yet to be determined. Methods The OPTIMIZE trial is a large, prospective, multicenter, randomized (1: 1) non-inferiority clinical evaluation of short-term (3 months) vs long-term (12-months) DAPT in patients undergoing E-ZES implantation in daily clinical practice. Overall, 3,120 patients were enrolled at 33 clinical sites in Brazil. The primary composite endpoint is death (any cause), myocardial infarction, cerebral vascular accident, and major bleeding at 12-month clinical follow-up post-index procedure. Conclusions The OPTIMIZE clinical trial will determine the clinical implications of DAPT duration with the second generation E-ZES in real-world patients undergoing percutaneous coronary intervention. (Am Heart J 2012;164:810-816.e3.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Im Bereich sicherheitsrelevanter eingebetteter Systeme stellt sich der Designprozess von Anwendungen als sehr komplex dar. Entsprechend einer gegebenen Hardwarearchitektur lassen sich Steuergeräte aufrüsten, um alle bestehenden Prozesse und Signale pünktlich auszuführen. Die zeitlichen Anforderungen sind strikt und müssen in jeder periodischen Wiederkehr der Prozesse erfüllt sein, da die Sicherstellung der parallelen Ausführung von größter Bedeutung ist. Existierende Ansätze können schnell Designalternativen berechnen, aber sie gewährleisten nicht, dass die Kosten für die nötigen Hardwareänderungen minimal sind. Wir stellen einen Ansatz vor, der kostenminimale Lösungen für das Problem berechnet, die alle zeitlichen Bedingungen erfüllen. Unser Algorithmus verwendet Lineare Programmierung mit Spaltengenerierung, eingebettet in eine Baumstruktur, um untere und obere Schranken während des Optimierungsprozesses bereitzustellen. Die komplexen Randbedingungen zur Gewährleistung der periodischen Ausführung verlagern sich durch eine Zerlegung des Hauptproblems in unabhängige Unterprobleme, die als ganzzahlige lineare Programme formuliert sind. Sowohl die Analysen zur Prozessausführung als auch die Methoden zur Signalübertragung werden untersucht und linearisierte Darstellungen angegeben. Des Weiteren präsentieren wir eine neue Formulierung für die Ausführung mit fixierten Prioritäten, die zusätzlich Prozessantwortzeiten im schlimmsten anzunehmenden Fall berechnet, welche für Szenarien nötig sind, in denen zeitliche Bedingungen an Teilmengen von Prozessen und Signalen gegeben sind. Wir weisen die Anwendbarkeit unserer Methoden durch die Analyse von Instanzen nach, welche Prozessstrukturen aus realen Anwendungen enthalten. Unsere Ergebnisse zeigen, dass untere Schranken schnell berechnet werden können, um die Optimalität von heuristischen Lösungen zu beweisen. Wenn wir optimale Lösungen mit Antwortzeiten liefern, stellt sich unsere neue Formulierung in der Laufzeitanalyse vorteilhaft gegenüber anderen Ansätzen dar. Die besten Resultate werden mit einem hybriden Ansatz erzielt, der heuristische Startlösungen, eine Vorverarbeitung und eine heuristische mit einer kurzen nachfolgenden exakten Berechnungsphase verbindet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volumetric data at micrometer level resolution can be acquired within a few minutes using synchrotron-radiation-based tomographic microscopy. The field of view along the rotation axis of the sample can easily be increased by stacking several tomograms, allowing the investigation of long and thin objects at high resolution. On the contrary, an extension of the field of view in the perpendicular direction is non-trivial. This paper presents an acquisition protocol which increases the field of view of the tomographic dataset perpendicular to its rotation axis. The acquisition protocol can be tuned as a function of the reconstruction quality and scanning time. Since the scanning time is proportional to the radiation dose imparted to the sample, this method can be used to increase the field of view of tomographic microscopy instruments while optimizing the radiation dose for radiation-sensitive samples and keeping the quality of the tomographic dataset on the required level. This approach, dubbed wide-field synchrotron radiation tomographic microscopy, can increase the lateral field of view up to five times. The method has been successfully applied for the three-dimensional imaging of entire rat lung acini with a diameter of 4.1 mm at a voxel size of 1.48 microm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this contribution, a pulse sequence is described for recording accordion-optimized DEPT experiments. The proposed ACCORDEPT experiment detects a wide range of one-bond coupling constants using accordion optimization. As a proof of concept, this strategy has been applied to a mesogen containing a large range of one-bond (1)J(CH) coupling constants associated with the various structural elements. The ACCORDEPT experiment afforded significant enhancements for the resonances with the larger 1JCH couplings, similar SNR for aliphatic resonances, but reduced SNR for aliphatic resonances as compared with the standard DEPT experiment. In addition, the ACCORDEPT is straightforward to implement, does not require any supplementary calibration procedures and can be used under automated conditions without difficulty by inexperienced users. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several practical obstacles in data handling and evaluation complicate the use of quantitative localized magnetic resonance spectroscopy (qMRS) in clinical routine MR examinations. To overcome these obstacles, a clinically feasible MR pulse sequence protocol based on standard available MR pulse sequences for qMRS has been implemented along with newly added functionalities to the free software package jMRUI-v5.0 to make qMRS attractive for clinical routine. This enables (a) easy and fast DICOM data transfer from the MR console and the qMRS-computer, (b) visualization of combined MR spectroscopy and imaging, (c) creation and network transfer of spectroscopy reports in DICOM format, (d) integration of advanced water reference models for absolute quantification, and (e) setup of databases containing normal metabolite concentrations of healthy subjects. To demonstrate the work-flow of qMRS using these implementations, databases for normal metabolite concentration in different regions of brain tissue were created using spectroscopic data acquired in 55 normal subjects (age range 6-61 years) using 1.5T and 3T MR systems, and illustrated in one clinical case of typical brain tumor (primitive neuroectodermal tumor). The MR pulse sequence protocol and newly implemented software functionalities facilitate the incorporation of qMRS and reference to normal value metabolite concentration data in daily clinical routine. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a part of the respiratory tissue barrier, lung epithelial cells play an important role against the penetration of the body by inhaled particulate foreign materials. In most cell culture models, which are designed to study particle-cell interactions, the cells are immersed in medium. This does not reflect the physiological condition of lung epithelial cells which are exposed to air, separated from it only by a very thin liquid lining layer with a surfactant film at the air-liquid interface. In this study, A549 epithelial cells were grown on microporous membranes in a two chamber system. After the formation of a confluent monolayer the cells were exposed to air. The morphology of the cells and the expression of tight junction proteins were studied with confocal laser scanning and transmission electron microscopy. Air-exposed cells maintained monolayer structure for 2 days, expressed tight junctions and developed transepithelial electrical resistance. Surfactant was produced and released at the apical side of the air-exposed epithelial cells. In order to study particle-cell interactions fluorescent 1 microm polystyrene particles were sprayed over the epithelial surface. After 4 h, 8.8% of particles were found inside the epithelium. This fraction increased to 38% after 24 h. During all observations, particles were always found in the cells but never between them. In this study, we present an in vitro model of the respiratory tract wall consisting of air-exposed lung epithelial cells covered by a liquid lining layer with a surfactant film to study particle-cell interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Assessment of lung volume (FRC) and ventilation inhomogeneities with ultrasonic flowmeter and multiple breath washout (MBW) has been used to provide important information about lung disease in infants. Sub-optimal adjustment of the mainstream molar mass (MM) signal for temperature and external deadspace may lead to analysis errors in infants with critically small tidal volume changes during breathing. METHODS: We measured expiratory temperature in human infants at 5 weeks of age and examined the influence of temperature and deadspace changes on FRC results with computer simulation modeling. A new analysis method with optimized temperature and deadspace settings was then derived, tested for robustness to analysis errors and compared with the previously used analysis methods. RESULTS: Temperature in the facemask was higher and variations of deadspace volumes larger than previously assumed. Both showed considerable impact upon FRC and LCI results with high variability when obtained with the previously used analysis model. Using the measured temperature we optimized model parameters and tested a newly derived analysis method, which was found to be more robust to variations in deadspace. Comparison between both analysis methods showed systematic differences and a wide scatter. CONCLUSION: Corrected deadspace and more realistic temperature assumptions improved the stability of the analysis of MM measurements obtained by ultrasonic flowmeter in infants. This new analysis method using the only currently available commercial ultrasonic flowmeter in infants may help to improve stability of the analysis and further facilitate assessment of lung volume and ventilation inhomogeneities in infants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a method for DRR generation as well as for volume gradients projection using hardware accelerated 2D texture mapping and accumulation buffering and demonstrates its application in 2D-3D registration of X-ray fluoroscopy to CT images. The robustness of the present registration scheme are guaranteed by taking advantage of a coarse-to-fine processing of the volume/image pyramids based on cubic B-splines. A human cadaveric spine specimen together with its ground truth was used to compare the present scheme with a purely software-based scheme in three aspects: accuracy, speed, and capture ranges. Our experiments revealed an equivalent accuracy and capture ranges but with much shorter registration time with the present scheme. More specifically, the results showed 0.8 mm average target registration error, 55 second average execution time per registration, and 10 mm and 10° capture ranges for the present scheme when tested on a 3.0 GHz Pentium 4 computer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: Fat suppressed 3D steady-state free precession (SSFP) sequences are of special interest in cartilage imaging due to their short repetition time in combination with high signal-to-noise ratio. At low-to-high fields (1.5-3.0 T), spectral spatial (spsp) radio frequency (RF) pulses perform superiorly over conventional saturation of the fat signal (FATSAT pulses). However, ultra-high fields (7.0 T and more) may offer alternative fat suppression techniques as a result of the increased chemical shift. MATERIALS AND METHODS: Application of a single, frequency selective, RF pulse is compared to spsp excitation for water (or fat) selective imaging at 7.0 T. RESULTS: For SSFP, application of a single frequency selective RF pulse for selective water or fat excitation performs beneficially over the commonly applied spsp RF pulses. In addition to the overall improved fat suppression, the application of single RF pulses leads to decreased power depositions, still representing one of the major restrictions in the design and application of many pulse sequences at ultra-high fields. CONCLUSION: The ease of applicability and implementation of single frequency selective RF pulses at ultra-high-fields might be of great benefit for a vast number of applications where fat suppression is desirable or fat-water separation is needed for quantification purposes.