938 resultados para optimal-stocking model
Resumo:
This paper studies Optimal Intelligent Supervisory Control System (OISCS) model for the design of control systems which can work in the presence of cyber-physical elements with privacy protection. The development of such architecture has the possibility of providing new ways of integrated control into systems where large amounts of fast computation are not easily available, either due to limitations on power, physical size or choice of computing elements.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
Tese de Doutoramento, Ciências Económicas e Empresariais (especialidade de Economia), 18 de Junho de 2015, Universidade dos Açores
Resumo:
This thesis presents the Fuzzy Monte Carlo Model for Transmission Power Systems Reliability based studies (FMC-TRel) methodology, which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states. This is followed by a remedial action algorithm, based on Optimal Power Flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. For the system states that cause load curtailment, an optimization approach is applied to reduce the probability of occurrence of these states while minimizing the costs to achieve that reduction. This methodology is of most importance for supporting the transmission system operator decision making, namely in the identification of critical components and in the planning of future investments in the transmission power system. A case study based on Reliability Test System (RTS) 1996 IEEE 24 Bus is presented to illustrate with detail the application of the proposed methodology.
Resumo:
Moving towards autonomous operation and management of increasingly complex open distributed real-time systems poses very significant challenges. This is particularly true when reaction to events must be done in a timely and predictable manner while guaranteeing Quality of Service (QoS) constraints imposed by users, the environment, or applications. In these scenarios, the system should be able to maintain a global feasible QoS level while allowing individual nodes to autonomously adapt under different constraints of resource availability and input quality. This paper shows how decentralised coordination of a group of autonomous interdependent nodes can emerge with little communication, based on the robust self-organising principles of feedback. Positive feedback is used to reinforce the selection of the new desired global service solution, while negative feedback discourages nodes to act in a greedy fashion as this adversely impacts on the provided service levels at neighbouring nodes. The proposed protocol is general enough to be used in a wide range of scenarios characterised by a high degree of openness and dynamism where coordination tasks need to be time dependent. As the reported results demonstrate, it requires less messages to be exchanged and it is faster to achieve a globally acceptable near-optimal solution than other available approaches.
Resumo:
Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.
Resumo:
Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.
Resumo:
Fuzzy logic controllers (FLC) are intelligent systems, based on heuristic knowledge, that have been largely applied in numerous areas of everyday life. They can be used to describe a linear or nonlinear system and are suitable when a real system is not known or too difficult to find their model. FLC provide a formal methodology for representing, manipulating and implementing a human heuristic knowledge on how to control a system. These controllers can be seen as artificial decision makers that operate in a closed-loop system, in real time. The main aim of this work was to develop a single optimal fuzzy controller, easily adaptable to a wide range of systems – simple to complex, linear to nonlinear – and able to control all these systems. Due to their efficiency in searching and finding optimal solution for high complexity problems, GAs were used to perform the FLC tuning by finding the best parameters to obtain the best responses. The work was performed using the MATLAB/SIMULINK software. This is a very useful tool that provides an easy way to test and analyse the FLC, the PID and the GAs in the same environment. Therefore, it was proposed a Fuzzy PID controller (FL-PID) type namely, the Fuzzy PD+I. For that, the controller was compared with the classical PID controller tuned with, the heuristic Ziegler-Nichols tuning method, the optimal Zhuang-Atherton tuning method and the GA method itself. The IAE, ISE, ITAE and ITSE criteria, used as the GA fitness functions, were applied to compare the controllers performance used in this work. Overall, and for most systems, the FL-PID results tuned with GAs were very satisfactory. Moreover, in some cases the results were substantially better than for the other PID controllers. The best system responses were obtained with the IAE and ITAE criteria used to tune the FL-PID and PID controllers.
Resumo:
Nowadays, many real-time operating systems discretize the time relying on a system time unit. To take this behavior into account, real-time scheduling algorithms must adopt a discrete-time model in which both timing requirements of tasks and their time allocations have to be integer multiples of the system time unit. That is, tasks cannot be executed for less than one time unit, which implies that they always have to achieve a minimum amount of work before they can be preempted. Assuming such a discrete-time model, the authors of Zhu et al. (Proceedings of the 24th IEEE international real-time systems symposium (RTSS 2003), 2003, J Parallel Distrib Comput 71(10):1411–1425, 2011) proposed an efficient “boundary fair” algorithm (named BF) and proved its optimality for the scheduling of periodic tasks while achieving full system utilization. However, BF cannot handle sporadic tasks due to their inherent irregular and unpredictable job release patterns. In this paper, we propose an optimal boundary-fair scheduling algorithm for sporadic tasks (named BF TeX ), which follows the same principle as BF by making scheduling decisions only at the job arrival times and (expected) task deadlines. This new algorithm was implemented in Linux and we show through experiments conducted upon a multicore machine that BF TeX outperforms the state-of-the-art discrete-time optimal scheduler (PD TeX ), benefiting from much less scheduling overheads. Furthermore, it appears from these experimental results that BF TeX is barely dependent on the length of the system time unit while PD TeX —the only other existing solution for the scheduling of sporadic tasks in discrete-time systems—sees its number of preemptions, migrations and the time spent to take scheduling decisions increasing linearly when improving the time resolution of the system.
Resumo:
The formulation of a bending vibration problem of an elastically restrained Bernoulli-Euler beam carrying a finite number of concentrated elements along its length is presented. In this study, the authors exploit the application of the differential evolution optimization technique to identify the torsional stiffness properties of the elastic supports of a Bernoulli-Euler beam. This hybrid strategy allows the determination of the natural frequencies and mode shapes of continuous beams, taking into account the effect of attached concentrated masses and rotational inertias, followed by a reconciliation step between the theoretical model results and the experimental ones. The proposed optimal identification of the elastic support parameters is computationally demanding if the exact eigenproblem solving is considered. Hence, the use of a Gaussian process regression as a meta-model is addressed. An experimental application is used in order to assess the accuracy of the estimated parameters throughout the comparison of the experimentally obtained natural frequency, from impact tests, and the correspondent computed eigenfrequency.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitive environment of electricity markets impose the use of new approaches in several domains. The network cost allocation, traditionally used in transmission networks, should be adapted and used in the distribution networks considering the specifications of the connected resources. The main goal is to develop a fairer methodology trying to distribute the distribution network use costs to all players which are using the network in each period. In this paper, a model considering different type of costs (fixed, losses, and congestion costs) is proposed comprising the use of a large set of DER, namely distributed generation (DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehicles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). The proposed model includes three distinct phases of operation. The first phase of the model consists in an economic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen's and Bialek's tracing algorithms are used and compared to evaluate the impact of each resource in the network. Finally, the MW-mile method is used in the third phase of the proposed model. A distribution network of 33 buses with large penetration of DER is used to illustrate the application of the proposed model.
Resumo:
In this paper, we formulate the electricity retailers’ short-term decision-making problem in a liberalized retail market as a multi-objective optimization model. Retailers with light physical assets, such as generation and storage units in the distribution network, are considered. Following advances in smart grid technologies, electricity retailers are becoming able to employ incentive-based demand response (DR) programs in addition to their physical assets to effectively manage the risks of market price and load variations. In this model, the DR scheduling is performed simultaneously with the dispatch of generation and storage units. The ultimate goal is to find the optimal values of the hourly financial incentives offered to the end-users. The proposed model considers the capacity obligations imposed on retailers by the grid operator. The profit seeking retailer also has the objective to minimize the peak demand to avoid the high capacity charges in form of grid tariffs or penalties. The non-dominated sorting genetic algorithm II (NSGA-II) is used to solve the multi-objective problem. It is a fast and elitist multi-objective evolutionary algorithm. A case study is solved to illustrate the efficient performance of the proposed methodology. Simulation results show the effectiveness of the model for designing the incentive-based DR programs and indicate the efficiency of NSGA-II in solving the retailers’ multi-objective problem.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics