973 resultados para optical injection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking.

In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy efficiency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The receiver sensitivity is measured to be -8.8dBm at 32Gb/s.

Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW.

Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be –64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical access engine integrated with the diagnostic and optical measurement techniques is a great platform for engine research because it provides clear visual access to the combustion chamber inside the engines. An optical access engine customized based on a 4-cylinder spark ignited direct injection (SIDI) production engine is located in the Advanced Power Systems Laboratories (APS LABS) at Michigan Technological University. This optical access engine inside the test cell has been set up for different engine research. In this report, two SAE papers in engine research utilizing the optical access engine are reviewed to gain basic understanding of the methodology. Though the optical engine in APS LABS is a little bit different from the engines used in the literature, the methodology in the papers provides guidelines for engine research through optical access engines. In addition, the optical access engine instrumentation including the test cell setup and the optical engine setup is described in detail in the report providing a solid record for later troubleshooting and reference. Finally, the motoring tests, firing tests and optical imaging experiment on the optical engine have been performed to validate the instrumentation. This report only describes so far the instrumentation of the optical engine in the APS LABS by April 2015.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis is to explore new and improved methods for greater sample introduction efficiency and enhanced analytical performance with inductively coupled plasma optical emission spectrometry (ICP-OES). Three projects are discussed in which the capabilities and applications of ICP-OES are expanded: 1. In the first project, a conventional ultrasonic nebuliser was modified to replace the heater/condenser with an infrared heated pre-evaporation tube. In continuation from previous works with pre-evaporation, the current work investigated the effects of heating with infrared block and rope heaters on two different ICP-OES instruments. Comparisons were made between several methods and setups in which temperatures were varied. By monitoring changes to sensitivity, detection limit, precision, and robustness, and analyzing two certified reference materials, a method with improved sample introduction efficiency and comparable analytical performance to a previous method was established. 2. The second project involved improvements to a previous work in which a multimode sample introduction system (MSIS) was modified by inserting a pre-evaporation tube between the MSIS and torch. The new work focused on applying an infrared heated ceramic rope for pre-evaporation. This research was conducted in all three MSIS modes (nebulisation mode, hydride generation mode, and dual mode) and on two different ICP-OES instruments, and comparisons were made between conventional setups in terms of sensitivity, detection limit, precision, and robustness. By tracking both hydride-forming and non-hydride forming elements, the effects of heating in combination with hydride generation were probed. Finally, optimal methods were validated by analysis of two certified reference materials. 3. A final project was completed in collaboration with ZincNyx Energy Solutions. This project sought to develop a method for the overall analysis of a 12 M KOH zincate fuel, which is used in green energy backup systems. By employing various techniques including flow injection analysis and standard additions, a final procedure was formulated for the verification of K concentration, as well as the measurement of additives (Al, Fe, Mg, In, Si), corrosion products (such C from CO₃²¯), and Zn particles both in and filtered from solution. Furthermore, the effects of exposing the potassium zincate electrolyte fuel to air were assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Person tracking systems to date have either relied on motion detection or optical flow as a basis for person detection and tracking. As yet, systems have not been developed that utilise both these techniques. We propose a person tracking system that uses both, made possible by a novel hybrid optical flow-motion detection technique that we have developed. This provides the system with two methods of person detection, helping to avoid missed detections and the need to predict position, which can lead to errors in tracking and mistakes when handling occlusion situations. Our results show that our system is able to track people accurately, with an average error less than four pixels, and that our system outperforms the current CAVIAR benchmark system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Person tracking systems are dependent on being able to locate a person accurately across a series of frames. Optical flow can be used to segment a moving object from a scene, provided the expected velocity of the moving object is known; but successful detection also relies on being able segment the background. A problem with existing optical flow techniques is that they don’t discriminate the foreground from the background, and so often detect motion (and thus the object) in the background. To overcome this problem, we propose a new optical flow technique, that is based upon an adaptive background segmentation technique, which only determines optical flow in regions of motion. This technique has been developed with a view to being used in surveillance systems, and our testing shows that for this application it is more effective than other standard optical flow techniques.