975 resultados para nucleolar organizer region associated proteins
Resumo:
Craniopharyngiomas (CP) are benign epithelial tumors of the sellar region and can be clinicopathologically distinguished into adamantinomatous (adaCP) and papillary (papCP) variants. Both subtypes are classified according to the World Health Organization grade I, but their irregular digitate brain infiltration makes any complete surgical resection difficult to obtain. Herein, we characterized the cellular interface between the tumor and the surrounding brain tissue in 48 CP (41 adaCP and seven papCP) compared to non-neuroepithelial tumors, i.e., 12 cavernous hemangiomas, 10 meningiomas, and 14 metastases using antibodies directed against glial fibrillary acid protein (GFAP), vimentin, nestin, microtubule-associated protein 2 (MAP2) splice variants, and tenascin-C. We identified a specific cell population characterized by the coexpression of nestin, MAP2, and GFAP within the invasion niche of the adamantinomatous subtype. This was especially prominent along the finger-like protrusions. A similar population of presumably astroglial precursors was not visible in other lesions under study, which characterize them as distinct histopathological feature of adaCP. Furthermore, the outer tumor cell layer of adaCP showed a distinct expression of MAP2, a novel finding helpful in the differential diagnosis of epithelial tumors in the sellar region. Our data support the hypothesis that adaCP, unlike other non-neuroepithelial tumors of the central nervous system, create a tumor-specific cellular environment at the tumor-brain junction. Whether this facilitates the characteristic infiltrative growth pattern or is the consequence of an activated Wnt signaling pathway, detectable in 90% of these tumors, will need further consideration.
Resumo:
External stresses or mutations may cause labile proteins to lose their distinct native conformations and seek alternatively stable aggregated forms. Molecular chaperones that specifically act on protein aggregates were used here as a tool to address the biochemical nature of stable homo- and hetero-aggregates from non-pathogenic proteins formed by heat-stress. Confirmed by sedimentation and activity measurements, chaperones demonstrated that a single polypeptide chain can form different species of aggregates, depending on the denaturing conditions. Indicative of a cascade reaction, sub-stoichiometric amounts of one fast-aggregating protein strongly accelerated the conversion of another soluble, slow-aggregating protein into insoluble, chaperone-resistant aggregates. Chaperones strongly inhibited seed-induced protein aggregation, suggesting that they can prevent and cure proteinaceous infectious behavior in homo- and hetero-aggregates from common and disease-associated proteins in the cell.
Resumo:
Microtubule-associated protein 1B, MAP1B, is one of the major growth associated and cytoskeletal proteins in neuronal and glial cells. It is present as a full length protein or may be fragmented into a heavy chain and a light chain. It is essential to stabilize microtubules during the elongation of dendrites and neurites and is involved in the dynamics of morphological structures such as microtubules, microfilaments and growth cones. MAP1B function is modulated by phosphorylation and influences microtubule stability, microfilaments and growth cone motility. Considering its large size, several interactions with a variety of other proteins have been reported and there is increasing evidence that MAP1B plays a crucial role in the stability of the cytoskeleton and may have other cellular functions. Here we review molecular and functional aspects of this protein, evoke its role as a scaffold protein and have a look at several pathologies where the protein may be involved.
Resumo:
AKAP-Lbc is a member of the A-kinase anchoring protein (AKAP) family that has been recently associated with the development of pathologies, such as cardiac hypertrophy and cancer. We have previously demonstrated that, at the molecular level, AKAP-Lbc functions as a guanine nucleotide exchange factor (GEF) that promotes the specific activation of RhoA. In the present study, we identified the ubiquitin-like protein LC3 as a novel regulatory protein interacting with AKAP-Lbc. Mutagenesis studies revealed that LC3, through its NH(2)-terminal alpha-helical domain, interacts with two binding sites located within the NH(2)-terminal regulatory region of AKAP-Lbc. Interestingly, LC3 overexpression strongly reduced the ability of AKAP-Lbc to interact with RhoA, profoundly impairing the Rho-GEF activity of the anchoring protein and, as a consequence, its ability to promote cytoskeletal rearrangements associated with the formation of actin stress fibers. Moreover, AKAP-Lbc mutants that fail to interact with LC3 show a higher basal Rho-GEF activity as compared with the wild type protein and become refractory to the inhibitory effect of LC3. This suggests that LC3 binding maintains AKAP-Lbc in an inactive state that displays a reduced ability to promote downstream signaling. Collectively, these findings provide evidence for a previously uncharacterized role of LC3 in the regulation of Rho signaling and in the reorganization of the actin cytoskeleton.
Resumo:
Transcriptional activity relies on coregulators that modify the chromatin structure and serve as bridging factors between transcription factors and the basal transcription machinery. Using the DE domain of human peroxisome proliferator-activated receptor gamma (PPARgamma) as bait in a yeast two-hybrid screen of a human adipose tissue library, we isolated the scaffold attachment factor B1 (SAFB1/HET/HAP), which was previously shown to be a corepressor of estrogen receptor alpha. We show here that SAFB1 has a very broad tissue expression profile in human and is also expressed all along mouse embryogenesis. SAFB1 interacts in pull-down assays not only with PPARgamma but also with all nuclear receptors tested so far, albeit with different affinities. The association of SAFB1 and PPARgamma in vivo is further demonstrated by fluorescence resonance energy transfer (FRET) experiments in living cells. We finally show that SAFB1 is a rather general corepressor for nuclear receptors. Its change in expression during the early phases of adipocyte and enterocyte differentiation suggests that SAFB1 potentially influences cell proliferation and differentiation decisions.
Resumo:
Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.
Resumo:
A family of homologous serine esterases designated granzyme A-H and the pore-forming protein perforin are present in cytoplasmic granules of mature peripheral cytolytic T lymphocytes and natural killer cells. In vivo, the majority of cytotoxic T cells containing these granule-associated proteins are of the CD4-CD8+ phenotype. It is generally assumed that these cells are derived from immature CD4-CD8- thymocytes. However, the precise intrathymic differentiation steps leading to functionally mature cytotoxic T cells are unclear. Thus we decided to analyze the expression of genes in the thymus which are preferentially expressed in mature cytotoxic cells, i.e. granzyme A, granzyme B, and perforin. In situ hybridization on tissue sections revealed the expression of genes coding for granzyme A and granzyme B in the thymus. No evidence was found, however, for thymocytes expressing the perforin gene. Granzyme A and granzyme B mRNA positive cells in the thymus are almost exclusively CD4-CD8- thymocytes, particularly of the CD3- IL2R- phenotype.
Resumo:
Microtubule-associated protein 1B, MAP1B, is a major cytoskeletal protein during brain development and one of the largest brain MAPs associated with microtubules and microfilaments. Here, we identified several proteins that bind to MAP1B via immunoprecipitation with a MAP1B-specific antibody, by one and two-dimensional gel electrophoresis and subsequent mass spectrometry identification of precipitated proteins. In addition to tubulin and actin, a variety of proteins were identified. Among these proteins were glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat shock protein 8, dihydropyrimidinase related proteins 2 and 3, protein-L-isoaspartate O-methyltransferase, beta-spectrin, and clathrin protein MKIAA0034, linking either directly or indirectly to MAP1B. In particular, GAPDH, a key glycolytic enzyme, was bound in large quantity to the heavy chain of MAP1B in adult brain tissue. In vitro binding studies confirmed a direct binding of GAPDH to MAP1B. In PC12 cells, GAPDH was found in cytoplasm and nuclei and partially co-localized with MAP1B. It disappeared from the cytoplasm under oxidative stress or after a disruption of cytoskeletal elements after colcemid or cytochalasin exposure. GAPDH may be essential in the local energy provision of cytoskeletal structures and MAP1B may help to keep this key enzyme close to the cytoskeleton.
Resumo:
Beside the several growth factors which play a crucial role in the development and regeneration of the nervous system, thyroid hormones also contribute to the normal development of the central and peripheral nervous system. In our previous work, we demonstrated that triiodothyronine (T3) in physiological concentration enhances neurite outgrowth of primary sensory neurons in cultures. Neurite outgrowth requires microtubules and microtubule associated proteins (MAPs). Therefore the effects of exogenous T3 or/and nerve growth factors (NGF) were tested on the expression of cytoskeletal proteins in primary sensory neurons. Dorsal root ganglia (DRG) from 19 day old rat embryos were cultured under four conditions: (1) control cultures in which explants were grown in the absence of T3 and NGF, (2) cultures grown in the presence of NGF alone, (3) in the presence of T3 alone or (4) in the presence of NGF and T3 together. Analysis of proteins by SDS-polyacrylamide gel electrophoresis revealed the presence of several proteins in the molecular weight region around 240 kDa. NGF and T3 together induced the expression of one protein, in particular, with a molecular weight above 240 kDa, which was identified by an antibody against MAP1c, a protein also known as cytoplasmic dynein. The immunocytochemical detection confirmed that this protein was expressed only in DRG explants grown in the presence of NGF and T3 together. Neither control explants nor explants treated with either NGF or T3 alone expressed dynein. In conclusion, a combination of nerve growth factor and thyroid hormone is necessary to regulate the expression of cytoplasmic dynein, a protein that is involved in retrograde axonal transport.
Resumo:
The present study describes the postnatal expression of calbindin, calretinin and parvalbumin and glutamic acid decarboxylase (GAD) and microtubule-associated protein 2 (MAP2) in organotypic monocultures of rat dorsal thalamus compared to the thalamus in vivo. Cultures were maintained for up to 7 weeks. Cortex-conditioned medium improved the survival of thalamic cultures. MAP2-immunoreactive material was present in somata and dendrites of small and large-sized neurons throughout the cultures. Parvalbumin immunoreactivity was present in larger multipolar or bitufted neurons along the edge of a culture. These neurons also displayed strong parvalbumin mRNA and GAD mRNA expression, and GABA immunoreactivity. They likely corresponded to cells of the nucleus reticularis thalami. Parvalbumin mRNA, but neither parvalbumin protein nor GAD mRNA, was expressed in neurons with large somata within the explant. They likely represented relay cells. GAD mRNA, but not parvalbumin mRNA, was expressed in small neurons within the explants. Small neurons also displayed calbindin- and calretinin-immunoreactivity. The small neurons likely represented local circuit neurons. The time course of expression of the calcium-binding proteins revealed that all were present at birth with the predicted molecular weights. A low, but constant parvalbumin expression was observed in vitro without the developmental increase seen in vivo, which most likely represented parvalbumin from afferent sources. In contrast, the explantation transiently downregulated the calretinin and calbindin expression, but the neurons recovered the expression after 14 and 21 days, respectively. In conclusion, thalamic monocultures older than three weeks represent a stable neuronal network containing well differentiated neurons of the nucleus reticularis thalami, relay cells and local circuit neurons.
Resumo:
The expression of microtubule-associated protein 1a (MAP1a) in the developing rat spinal cord was studied using the monoclonal antibody BW6. Immunoblots of microtubule preparations revealed the presence of MAP1a in spinal cord tissue of rats aged embryonal day 16 and postnatal day 0. The spinal cord matrix layer, between embryonal days 12-17, displayed a pattern of MAP1a-positive processes, horizontally oriented in between the membrane limitans interna and externa. The mantle layer stained intensely for MAP1a between embryonal day 12 and postnatal day 2. MAP1a was found in neuronal cell bodies, axons and dendrites, located mainly in the ventral and intermediate mantle layer. In the marginal layer, MAP1a-positive axons could be observed between embryonal days 14-18. During further development, the intensity of the MAP1a staining in the spinal columns gradually decreased. These expression patterns indicate an involvement of MAP1a in the proliferation and differentiation of neuroblasts, and the maturation of the long spinal fiber systems, i.e. early events in spinal cord development
Resumo:
The microtubule-associated protein MAP2 is essential for development of early neuronal morphology and maintenance of adult neuronal morphology. Several splice variants exist, MAP2a-d, with a lack of MAP2a in cat brain. MAP2 is widely used as a neuronal marker. In this study we compared five monoclonal antibodies (MAbs) against MAP2. They show differences in the immunocytochemical distribution of MAP2 isoforms during development of the visual cortex and cerebellum of the cat. Local and temporal differences were seen with MAb AP18, an antibody directed against a phosphorylation-dependent epitope near the N-terminal end. In large pyramidal dendrites in visual cortex, the AP18 epitope remained in parts immunoreactive after treatment with alkaline phosphatase. Three MAbs, AP14, MT-01, and MT-02, recognized the central region of the MAP2b molecule, which is not present in MAP2c and 2d, and reacted with phosphorylation-independent epitopes. During the first postnatal week the immunostaining in cerebellum differed between antibodies in that some cellular elements in external and internal granular layers and Purkinje cells were stained to various degrees, whereas at later stages staining patterns were similar. At early stages, antibody MT-02 stained cell bodies and dendrites in cerebral cortex and cerebellum. With progressing maturation, immunoreactivity became restricted to distal parts of apical dendrites of pyramidal cells and was absent from perikarya and finer proximal dendrites in cortex. MT-02 did not stain MAP2 in cerebellum of adult animals. This study demonstrates that the immunocytochemical detection of MAP2 depends on modifications such as phosphorylation and conformational changes of the molecule, and that MAP2 staining patterns differ between MAbs. Phosphorylation and specific conformations in the molecule may be essential for modulating function and molecular stability of MAP2, and monoclonal antibodies against such sites may provide tools for studying the functional role of modifications.
Resumo:
Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts.
Resumo:
Podocytes are essential for the function of the kidney glomerular filter. A highly differentiated cytoskeleton is requisite for their integrity. Although much knowledge has been gained on the organization of cortical actin networks in podocyte's foot processes, less is known about the molecular organization of the microtubular cytoskeleton in primary processes and the cell body. To gain an insight into the organization of the microtubular cytoskeleton of the podocyte, we systematically analyzed the expression of microtubule associated proteins (Maps), a family of microtubules interacting proteins with known functions as regulator, scaffold and guidance proteins. We identified microtubule associated protein 1b (MAP1B) to be specifically enriched in podocytes in human and rodent kidney. Using immunogold labeling in electron microscopy, we were able to demonstrate an enrichment of MAP1B in primary processes. A similar association of MAP1B with the microtubule cytoskeleton was detected in cultured podocytes. Subcellular distribution of MAP1B HC and LC1 was analyzed using a double fluorescent reporter MAP1B fusion protein. Subsequently we analyzed mice constitutively depleted of MAP1B. Interestingly, MAP1B KO was not associated with any functional or structural alterations pointing towards a redundancy of MAP proteins in podocytes. In summary, we established MAP1B as a specific marker protein of the podocyte microtubular cytoskeleton.
Resumo:
During the past few years, a considerable number of research articles have been published relating to the structure and function of the major photosynthetic protein complexes, photosystem (PS) I, PSII, cytochrome (Cyt) b6f, and adenosine triphosphate (ATP) synthase. Sequencing of the Arabidopsis thaliana (Arabidopsis) genome together with several high-quality proteomics studies has, however, revealed that the thylakoid membrane network of plant chloroplasts still contains a number of functionally unknown proteins. These proteins may have a role as auxiliary proteins guiding the assembly, maintenance, and turnover of the thylakoid protein complexes, or they may be as yet unknown subunits of the photosynthetic complexes. Novel subunits are most likely to be found in the NAD(P)H dehydrogenase (NDH) complex, the structure and function of which have remained obscure in the absence of detailed crystallographic data, thus making this thylakoid protein complex a particularly interesting target of investigation. In this thesis, several novel thylakoid-associated proteins were identified by proteomics-based methods. The major goal of characterization of the stroma thylakoid associated polysome-nascent chain complexes was to determine the proteins that guide the dynamic life cycle of PSII. In addition, a large protein complex of ≥ 1,000 kDa, residing in the stroma thylakoid, was characterized in greater depth and it was found to be a supercomplex composed of the PSI and NDH complexes. A set of newly identified proteins from Arabidopsis thylakoids was subjected to detailed characterization using the reverse genetics approach and extensive biochemical and biophysical analysis. The role of the novel proteins, either as auxiliary proteins or subunits of the photosynthetic protein complexes, was revealed. Two novel thylakoid lumen proteins, TLP18.3 and AtCYP38, function as auxiliary proteins assisting specific steps of the assembly/repair of PSII. The role of the 10-kDa thylakoid lumen protein PsbR is related to the optimization of oxygen evolution of PSII by assisting the assembly of the PsbP protein. Two integral thylakoid membrane proteins, NDH45 and NDH48, are novel subunits of the chloroplast NDH complex. Finally, the thylakoid lumen immunophilin AtCYP20-2 is suggested to interact with the NDH complex, instead of PSII as was hypothesized earlier.