991 resultados para nuclear import pathway


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nuclear receptors regulate metabolic pathways in response to changes in the environment by appropriate alterations in gene expression of key metabolic enzymes. Here, a computational search approach based on iteratively built hidden Markov models of nuclear receptors was used to identify a human nuclear receptor, termed hPAR, that is expressed in liver and intestines. hPAR was found to be efficiently activated by pregnanes and by clinically used drugs including rifampicin, an antibiotic known to selectively induce human but not murine CYP3A expression. The CYP3A drug-metabolizing enzymes are expressed in gut and liver in response to environmental chemicals and clinically used drugs. Interestingly, hPAR is not activated by pregnenolone 16α-carbonitrile, which is a potent inducer of murine CYP3A genes and an activator of the mouse receptor PXR.1. Furthermore, hPAR was found to bind to and trans-activate through a conserved regulatory sequence present in human but not murine CYP3A genes. These results provide evidence that hPAR and PXR.1 may represent orthologous genes from different species that have evolved to regulate overlapping target genes in response to pharmacologically distinct CYP3A activators, and have potential implications for the in vitro identification of drug interactions important to humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A–H). Two FA genes, corresponding to complementation groups A and C, have been cloned, but the function of the FAA and FAC proteins remains unknown. We have recently shown that the FAA and FAC proteins bind and form a nuclear complex. In the current study, we analyzed the FAA and FAC proteins in normal lymphoblasts and lymphoblasts from multiple FA complementation groups. In contrast to normal controls, FA cells derived from groups A, B, C, E, F, G, and H were defective in the formation of the FAA/FAC protein complex, the phosphorylation of the FAA protein, and the accumulation of the FAA/FAC protein complex in the nucleus. These biochemical events seem to define a signaling pathway required for the maintenance of genomic stability and normal hematopoiesis. Our results support the idea that multiple gene products cooperate in the FA Pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In addition to the well-characterized GTP-dependent nuclear transport observed in permeabilized cells, we detected a mode of nuclear transport that was GTP-independent at elevated cytoplasmic calcium concentrations. Nuclear transport under these conditions was blocked by calmodulin inhibitors. Recombinant calmodulin restored ATP-dependent nuclear transport in the absence of cytosol. Calmodulin-dependent transport was inhibited by wheat germ agglutinin consistent with transport proceeding through nuclear pores. We propose that release of intracellular calcium stores upon cell activation inhibits GTP-dependent nuclear transport; the elevated cytosolic calcium then acts through calmodulin to stimulate the novel GTP-independent mode of import.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The epidermal growth factor (EGF) family of receptors (EGFR) is overproduced in estrogen receptor (ER) negative (−) breast cancer cells. An inverse correlation of the level of EGFR and ER is observed between ER− and ER positive (+) breast cancer cells. A comparative study with EGFR-overproducing ER− and low-level producing ER+ breast cancer cells suggests that EGF is a major growth-stimulating factor for ER− cells. An outline of the pathway for the EGF-induced enhanced proliferation of ER− human breast cancer cells is proposed. The transmission of mitogenic signal induced by EGF–EGFR interaction is mediated via activation of nuclear factor κB (NF-κB). The basal level of active NF-κB in ER− cells is elevated by EGF and inhibited by anti-EGFR antibody (EGFR-Ab), thus qualifying EGF as a NF-κB activation factor. NF-κB transactivates the cell-cycle regulatory protein, cyclin D1, which causes increased phosphorylation of retinoblastoma protein, more strongly in ER− cells. An inhibitor of phosphatidylinositol 3 kinase, Ly294–002, blocked this event, suggesting a role of the former in the activation of NF-κB by EGF. Go6976, a well-characterized NF-κB inhibitor, blocked EGF-induced NF-κB activation and up-regulation of cell-cycle regulatory proteins. This low molecular weight compound also caused apoptotic death, predominantly more in ER− cells. Thus Go6976 and similar NF-κB inhibitors are potentially novel low molecular weight therapeutic agents for treatment of ER− breast cancer patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chloroplast to chromoplast development involves new synthesis and plastid localization of nuclear-encoded proteins, as well as changes in the organization of internal plastid membrane compartments. We have demonstrated that isolated red bell pepper (Capsicum annuum) chromoplasts contain the 75-kD component of the chloroplast outer envelope translocon (Toc75) and are capable of importing chloroplast precursors in an ATP-dependent fashion, indicating a functional general import apparatus. The isolated chromoplasts were able to further localize the 33- and 17-kD subunits of the photosystem II O2-evolution complex (OE33 and OE17, respectively), lumen-targeted precursors that utilize the thylakoidal Sec and ΔpH pathways, respectively, to the lumen of an internal membrane compartment. Chromoplasts contained the thylakoid Sec component protein, cpSecA, at levels comparable to chloroplasts. Routing of OE17 to the lumen was abolished by ionophores, suggesting that routing is dependent on a transmembrane ΔpH. The chloroplast signal recognition particle pathway precursor major photosystem II light-harvesting chlorophyll a/b protein failed to associate with chromoplast membranes and instead accumulated in the stroma following import. The Pftf (plastid fusion/translocation factor), a chromoplast protein, integrated into the internal membranes of chromoplasts during in vitro assays, and immunoblot analysis indicated that endogenous plastid fusion/translocation factor was also an integral membrane protein of chromoplasts. These data demonstrate that the internal membranes of chromoplasts are functional with respect to protein translocation on the thylakoid Sec and ΔpH pathways.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The alpha subunit of the karyopherin heterodimer functions in recognition of the protein import substrate and the beta subunit serves to dock the trimeric complex to one of many sites on nuclear pore complex fibers. The small GTPase Ran and the Ran interactive protein, p10, function in the release of the docked complex. Repeated cycles of docking and release are thought to concentrate the transport substrate for subsequent diffusion into the nucleus. Ran-GTP dissociates the karyopherin heterodimer and forms a stoichiometric complex with Ran-GTP. Here we report the mapping of karyopherin beta's binding sites both for Ran-GTP and for karyopherin alpha. We discovered that karyopherin beta's binding site for Ran-GTP shows a striking sequence similarity to the cytoplasmic Ran-GTP binding protein, RanBP1. Moreover, we found that Ran-GTP and karyopherin alpha bind to overlapping sites on karyopherin beta. Having a higher affinity to the overlapping site, Ran-GTP displaces karyopherin alpha and binds to karyopherin beta. Competition for overlapping binding sites may be the mechanism by which GTP bound forms of other small GTPases function in corresponding dissociation-association reactions. We also mapped Ran's binding site for karyopherin beta to a cluster of basic residues analogous to those previously shown to constitute karyopherin alpha's binding site to karyopherin beta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of total body weight and 50% of energy expenditure and is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. Excessive caloric intake is sensed by the brain and induces beta-adrenergic receptor (beta-AR)- mediated adaptive thermogenesis. beta-AR null mice develop severe obesity on a high fat diet. However, the target gene(s), target tissues(s), and molecular mechanism involved remain obscure. We observed that 30 - 60 min of beta-AR agonist ( isoprenaline) treatment of C2C12 skeletal muscle cells strikingly activated (> 100-fold) the expression of the mRNA encoding the nuclear hormone receptor, Nur77. In contrast, the expression of other nuclear receptors that regulate lipid and carbohydrate metabolism was not induced. Stable transfection of Nur77-specific small interfering RNAs (siNur77) into skeletal muscle cells repressed endogenous Nur77 mRNA expression. Moreover, we observed attenuation of gene and protein expression associated with the regulation of energy expenditure and lipid homeostasis, for example AMP-activated protein kinase gamma 3, UCP3, CD36,adiponectin receptor 2, GLUT4, and caveolin-3. Attenuation of Nur77 expression resulted in decreased lipolysis. Finally, in concordance with the cell culture model, injection and electrotransfer of siNur77 into mouse tibialis cranialis muscle resulted in the repression of UCP3 mRNA expression. This study demonstrates regulatory cross-talk between the nuclear hormone receptor and beta-AR signaling pathways. Moreover, it suggests Nur77 modulates the expression of genes that are key regulators of skeletal muscle lipid and energy homeostasis. In conclusion, we speculate that Nur77 agonists would stimulate lipolysis and increase energy expenditure in skeletal muscle and suggest selective activators of Nur77 may have therapeutic utility in the treatment of obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac arrhythmias are one of the main causes of death worldwide. Several studies have shown that inflammation plays a key role in different cardiac diseases and Toll-like receptors (TLRs) seem to be involved in cardiac complications. In the present study, we investigated whether the activation of TLR4 induces cardiac electrical remodeling and arrhythmias, and the signaling pathway involved in these effects. Membrane potential was recorded in Wistar rat ventricle. Ca(2+) transients, as well as the L-type Ca(2+) current (ICaL) and the transient outward K(+) current (Ito), were recorded in isolated myocytes after 24 h exposure to the TLR4 agonist, lipopolysaccharide (LPS, 1 μg/ml). TLR4 stimulation in vitro promoted a cardiac electrical remodeling that leads to action potential prolongation associated with arrhythmic events, such as delayed afterdepolarization and triggered activity. After 24 h LPS incubation, Ito amplitude, as well as Kv4.3 and KChIP2 mRNA levels were reduced. The Ito decrease by LPS was prevented by inhibition of interferon regulatory factor 3 (IRF3), but not by inhibition of interleukin-1 receptor-associated kinase 4 (IRAK4) or nuclear factor kappa B (NF-κB). Extrasystolic activity was present in 25% of the cells, but apart from that, Ca(2+) transients and ICaL were not affected by LPS; however, Na(+)/Ca(2+) exchanger (NCX) activity was apparently increased. We conclude that TLR4 activation decreased Ito, which increased AP duration via a MyD88-independent, IRF3-dependent pathway. The longer action potential, associated with enhanced Ca(2+) efflux via NCX, could explain the presence of arrhythmias in the LPS group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiomyocyte hypertrophy occurs in response to a variety of physiological and pathological stimuli. While pathological hypertrophy in heart failure is usually coupled with depressed contractile function, physiological hypertrophy associates with increased contractility. In the present study, we explored whether 8 weeks of moderate intensity exercise training would lead to a cardiac anti-remodelling effect in an experimental model of heart failure associated with a deactivation of a pathological (calcineurin/NFAT, CaMKII/HDAC) or activation of a physiological (Akt-mTOR) hypertrophy signalling pathway. The cardiac dysfunction, exercise intolerance, left ventricle dilatation, increased heart weight and cardiomyocyte hypertrophy from mice lacking alpha(2A) and alpha(2C) adrenoceptors (alpha(2A)/alpha(2C)ARKO mice) were associated with sympathetic hyperactivity induced heart failure. The relative contribution of Ca(2+)-calmodulin high-affinity (calcineurin/NFAT) and low-affinity (CaMKII/HDAC) targets to pathological hypertrophy of alpha(2A)/alpha(2C)ARKO mice was verified. While nuclear calcineurin B, NFATc3 and GATA-4 translocation were significantly increased in alpha(2A)/alpha(2C)ARKO mice, no changes were observed in CaMKII/HDAC activation. As expected, cyclosporine treatment decreased nuclear translocation of calcineurin/NFAT in alpha(2A)/alpha(2C)ARKO mice, which was associated with improved ventricular function and a pronounced anti-remodelling effect. The Akt/mTOR signalling pathway was not activated in alpha(2A)/alpha(2C)ARKO mice. Exercise training improved cardiac function and exercise capacity in alpha(2A)/alpha(2C)ARKO mice and decreased heart weight and cardiomyocyte width paralleled by diminished nuclear NFATc3 and GATA-4 translocation as well as GATA-4 expression levels. When combined, these findings support the notion that deactivation of calcineurin/NFAT pathway-induced pathological hypertrophy is a preferential mechanism by which exercise training leads to the cardiac anti-remodelling effect in heart failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Topical flavonoids, such as quercetin, have been shown to reduce ultraviolet (UV) irradiation-mediated skin damage. However, the mechanisms and signaling pathways involved in this protective effect are not clear. UV irradiation leads to activation of two major signaling pathways, namely nuclear factor kappa B (NF-kappa B) and activator protein-1 (AP-1) pathways. Activation of NF-kappa B pathway by UV irradiation stimulates inflammatory cytokine expression, whereas activation of AP-1 pathway by UV irradiation promotes matrix metalloproteinase (MMP) production. Both pathways contribute to UV irradiation-induced skin damage, such as photoaging and skin tumor formation. Objective: To elucidate the underlying mechanism, we examined the effect of quercetin on UV irradiation induced activation of NF-kappa B and AP-1 pathways. Methods: Primary human keratinocytes, the major skin cell type subjected to physiological solar UV irradiation, were used to study the effects of quercetin on UV irradiation-induced signal transduction pathways. Results: Quercetin decreased UV irradiation-induced NF-kappa B DNA-binding by 80%. Consequently, quercetin suppressed UV irradiation-induced expression of inflammatory cytokines IL-1 beta (similar to 60%), IL-6 (similar to 80%), IL-8 (similar to 76%) and TNF-alpha (similar to 69%). In contrast, quercetin had no effect on UV irradiation activation of three MAP kinases, ERK, JNK, or p38. Accordingly, induction of AP-1 target genes such as MMP-1 and MMP-3 by UV irradiation was not suppressed by quercetin. Conclusion: Our data indicate that the ability of quercetin to block UV irradiation-induced skin inflammation is mediated, at least in part, by its inhibitory effect on NF-kappa B activation and inflammatory cytokine production. (C) 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. Among T. cruzi-infected individuals, only a subgroup develops severe chronic Chagas cardiomyopathy (CCC); the majority remain asymptomatic. T. cruzi displays numerous ligands for the Toll-like receptors (TLRs), which are an important component of innate immunity that lead to the transcription of proinflammatory cytokines by nuclear factor-kappa B. Because proinflammatory cytokines play an important role in CCC, we hypothesized that single-nucleotide polymorphisms (SNPs) in the genes that encode proteins in the TLR pathway could explain differential susceptibility to CCC among T. cruzi-infected individuals. Methods. For 169 patients with CCC and 76 T. cruzi-infected, asymptomatic individuals, we analyzed SNPs by use of polymerase chain reaction-restriction fragment length polymorphism analysis for the genes TLR1, TLR2, TLR4, TLR5, TLR9, and MAL/TIRAP, which encodes an adaptor protein. Results. Heterozygous carriers of the MAL/TIRAP variant S180L were more prevalent in the asymptomatic group (24 [32%] of 76 subjects) than in the CCC group (21 [12%] of 169) (chi(2) = 12.6; P = .0004 [adjusted P (P(c)) = .0084]; odds ratio [OR], 0.31 [95% confidence interval {CI}, 0.16-0.60]). Subgroup analysis showed a stronger association when asymptomatic patients were compared with patients who had severe CCC (i.e., patients with left-ventricular ejection fraction <= 40%) (chi(2) = 11.3; P = .0008 [P(c) = .017]; OR, 0.22 [95% CI, 0.09-0.56]) than when asymptomatic patients were compared with patients who had mild CCC (i.e., patients with left-ventricular ejection fraction >40%) (chi(2) = 7.7; P = .005 [P(c) = .11]; OR, 0.33 [95% CI, 0.15-0.73]). Conclusion. T. cruzi-infected individuals who are heterozygous for the MAL/TIRAP S180L variant that leads to a decrease in signal transduction upon ligation of TLR2 or TLR4 to their respective ligand may have a lower risk of developing CCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wilms tumor (WT), a tumor composed of three histological components - blastema (BL), epithelia and stroma - is considered an appropriate model system to study the biological relationship between differentiation and tumorigenesis. To investigate molecular associations between nephrogenesis and WT, the gene expression pattern of individual cellular components was analyzed, using a customized platform containing 4,608 genes. WT gene expression patterns were compared to genes regulated during kidney differentiation. BL had a closer gene expression pattern to the earliest stage of normal renal development. The BL gene expression pattern was compared to that of fetal kidney (FK) and also between FK and mature kidney, identifying 25 common de-regulated genes supposedly involved in the earliest events of WT onset. Quantitative RT-PCR was performed, confirming the difference in expression levels for 13 of 16 genes (81.2%) in the initial set and 8 of 13 (61.5%) in an independent set of samples. An overrepresentation of genes belonging to the Wnt signaling pathway was identified, namely PLCG2, ROCK2 and adenomatous polyposis coli (APC). Activation of the Wnt pathway was confirmed in WT, using APC at protein level and PLCG2 at mRNA and protein level. APC showed positive nuclear immunostaining for an independent set of WT samples, similarly to the FK in week 11. Lack of PLCG2 expression was confirmed in WT and in FK until week 18. Taken together, these results provided molecular evidence of the recapitulation of the embryonic kidney by WT as well as involvement of the Wnt pathway in the earliest events of WT onset. Copyright (C) 2008 S. Karger AG, Basel.