997 resultados para nonsense mediated mRNA decay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recognition of the importance of mRNA turnover in regulating eukaryotic gene expression has mandated the development of reliable, rigorous, and "user-friendly" methods to accurately measure changes in mRNA stability in mammalian cells. Frequently, mRNA stability is studied indirectly by analyzing the steady-state level of mRNA in the cytoplasm; in this case, changes in mRNA abundance are assumed to reflect only mRNA degradation, an assumption that is not always correct. Although direct measurements of mRNA decay rate can be performed with kinetic labeling techniques and transcriptional inhibitors, these techniques often introduce significant changes in cell physiology. Furthermore, many critical mechanistic issues as to deadenylation kinetics, decay intermediates, and precursor-product relationships cannot be readily addressed by these methods. In light of these concerns, we have previously reported transcriptional pulsing methods based on the c-fos serum-inducible promoter and the tetracycline-regulated (Tet-off) promoter systems to better explain mechanisms of mRNA turnover in mammalian cells. In this chapter, we describe and discuss in detail different protocols that use these two transcriptional pulsing methods. The information described here also provides guidelines to help develop optimal protocols for studying mammalian mRNA turnover in different cell types under a wide range of physiologic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The storage of translationally inactive mRNAs in cytosolic granules enables cells to react flexibly to environmental changes. In eukaryotes, Scd6 (suppressor of clathrin deficiency 6)/Rap55 (RNA-associated protein 55), a member of the LSm14 (like-Sm14) family, is an important factor in the formation and activity of P-bodies, where mRNA decay factors accumulate, in stress granules that store mRNAs under adverse conditions and in granules that store developmentally regulated mRNAs. SCD6 from Trypanosoma brucei (TbSCD6) shares the same domain architecture as orthologous proteins in other organisms and is also present in cytosolic granules (equivalent to P-bodies). We show that TbSCD6 is a general repressor of translation and that its depletion by RNAi results in a global increase in protein synthesis. With few exceptions, the steady-state levels of proteins are unchanged. TbSCD6 is not required for the formation of starvation-induced granules in trypanosomes, and unlike Scd6 from yeast, Plasmodium and all multicellular organisms analysed to date, it does not form a complex with the helicase Dhh1 (DExD/H-box helicase 1). In common with Xenopus laevis RAP55, TbSCD6 co-purifies with two arginine methyltransferases; moreover, TbSCD6 itself is methylated on three arginine residues. Finally, a detailed analysis identified roles for the Lsm and N-rich domains in both protein localization and tr

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Toll-like receptors are of key importance in the recognition of and response to infectious agents by cells of the innate immune system. TLR mRNA expression and TLR-mediated functions were determined in bovine macrophages (MPhi) infected with bovine viral diarrhea virus (BVDV) or stimulated with interferon-gamma (IFN-gamma) in order to see whether they are correlated under these conditions. As parameters quantitative real time RT-PCR (QRT-PCR) for TLR2, TLR3 and TLR4, NO and TNF production were measured. Triggering of bovine MPhi with bona fide TLR2 and TLR4 agonists (lipopolysaccharide, lipoteichoic acid, peptidoglycan, lipopetide) led to NO and TNF production but neither TLR3 nor TLR9 agonists (double-stranded RNA, CpG DNA) showed this effect. The mRNA expression of TLR2, TLR3 and TLR4 was neither influenced by MPhi costimulation with IFN-gamma nor by MPhi preinfection with BVDV nor by the ligands themselves. However, NO production induced by TLR2 or TLR4 agonists was strongly modulated either by IFN-gamma costimulation or BVDV preinfection. Thus costimulation of MPhi with IFN-gamma resulted in an increase of both NO synthesis and TNF expression by cells stimulated simultaneously by TLR2 or TLR4 agonists. Preinfection of bovine MPhi by BVDV resulted in upregulation of TLR2- and TLR4-mediated NO synthesis. Collectively, these data show that TLR-mediated functions may be modulated by viral infection or activation via IFN-gamma of MPhi whereas the mRNA concentrations of relevant TLR members were not significantly influenced. Thus, the amount of TLR2, TLR3 and TLR4 mRNA transcripts is stable at least under the conditions tested. More importantly, modulation of TLR-mediated responses was dissociated from mRNA expression of TLR members.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. METHODS: We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. RESULTS: The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene expression in the mice livers, which did not produce the therapeutic effects on alteration the lipid levels or the inhibition of atherosclerosis development. In contrast, the ribozyme RB15 RNA mediated by scAAV2-TTR-RB15 vector was expressed immediately at day-1 after transduction in HepG2 cells. The apoB mRNA levels were decreased 47% (p = 0.001), compared to the control vector scAAV2-TTR-RB15-mutant. CONCLUSION: This study provided evidence that the rAAV2 single-strand vector mediated a prolonged but not efficient transduction in mouse liver. However, the scAAV2 double-strand vector mediated a rapid and efficient gene expression in liver cells. This strategy using scAAV2 vectors represents a better approach to express small molecules such as ribozyme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dominant-negative mutations in the homopentameric extracellular matrix glycoprotein cartilage oligomeric matrix protein (COMP) result in inappropriate intracellular retention of misfolded COMP in the rough endoplasmic reticulum of chondrocytes, causing chondrocyte cell death, which leads to two skeletal dysplasias: pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1). COMP null mice show no adverse effects on normal bone development and growth, suggesting a possible therapy involving removal of COMP mRNA. The goal of this study was to assess the ability of a hammerhead ribozyme (Ribo56, designed against the D469del mutation) to reduce COMP mRNA expression. In COS7 cells transfected with plasmids that overexpress wild-type or mutant COMP mRNA and Ribo56, the ribozyme reduced overexpressed normal COMP mRNA by 46% and mutant COMP mRNA by 56% in a dose-dependent manner. Surprisingly, the use of recombinant adenoviruses to deliver wild-type or mutant COMP mRNA and Ribo56 simultaneously into COS7 cells proved problematic for the activity of the ribozyme to reduce COMP expression. However, in normal human costochondral cells (hCCCs) infected only with adenoviruses expressing Ribo56, expression of endogenous wild-type COMP mRNA was reduced in a dose-dependent manner by 50%. In chondrocytes that contain heterozygous COMP mutations (D469del, G427E and D511Y) that cause PSACH, Ribo56 was more effective at reducing COMP mRNA (up to 70%). These results indicate that Ribo56 is effective at reducing mutant and wild-type COMP levels in cells and suggests a possible mode of therapy to reduce the mutant protein load.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

UNLABELLED Adenovirus dodecahedron (Dd), a nanoparticulate proteinaceous biodegradable virus-like particle (VLP), was used as a vector for delivery of an oncogene inhibitor to hepatocellular carcinoma (HCC) rat orthotopic model. Initiation factor eIF4E is an oncogene with elevated expression in human cancers. Cell-impermeant eIF4E inhibitor, cap structure analog (cap) and anti-cancer antibiotic doxorubicin (Dox) were delivered as Dd conjugates. Dd-cap and Dd-dox inhibited cancer cell culture proliferation up to 50 and 84%, respectively, while with free Dox similar results could be obtained only at a 5 times higher concentration. In animal HCC model the combination treatment of Dd-cap/Dd-dox caused 40% inhibition of tumor growth. Importantly, the level of two pro-oncogenes, eIF4E and c-myc, was significantly diminished in tumor sections of treated rats. Attachment to Dd, a virus-like particle, permitted the first demonstration of cap analog intracellular delivery and resulted in improved doxorubicin delivery leading to statistically significant inhibition of HCC tumor growth. FROM THE CLINICAL EDITOR Adenovirus dodecahedron, a nanoparticulate proteinaceous biodegradable virus-like particle was used in this study as a vector for the concomitant delivery of cap structure analog and doxorubicine to hepatocellular carcinoma in a rat model, resulting in significant inhibition of tumor growth.