955 resultados para non-mydriatic retinal camera
Resumo:
The Retinal Vessel Analyser (RVA) is a commercially available ophthalmoscopic instrument capable of acquiring vessel diameter fluctuations in real time and in high temporal resolution. Visual stimulation by means of flickering light is a unique exploration tool of neurovascular coupling in the human retina. Vessel reactivity as mediated by local vascular endothelial vasodilators and vasoconstrictors can be assessed non-invasively, in vivo. In brief, the work in this thesis • deals with interobserver and intraobserver reproducibility of the flicker responses in healthy volunteers • explains the superiority of individually analysed reactivity parameters over vendorgenerated output • links in static retinal measures with dynamic ones • highlights practical limitations in the use of the RVA that may undermine its clinical usefulness • provides recommendations for standardising measurements in terms of vessel location and vessel segment length and • presents three case reports of essential hypertensives in a -year follow-up. Strict standardisation of measurement procedures is a necessity when utilising the RVA system. Agreement between research groups on implemented protocols needs to be met, before it could be considered a clinically useful tool in detecting or predicting microvascular dysfunction.
Resumo:
To assess the impact of light scatter, similar to that introduced by cataract on retinal vessel blood oxygen saturation measurements using poly-bead solutions of varying concentrations. Eight healthy, young, non-smoking individuals were enrolled for this study. All subjects underwent digital blood pressure measurements, assessment of non-contact intraocular pressure, pupil dilation and retinal vessel oximetry using dual wavelength photography (Oximetry Module, Imedos Systems, Germany). To simulate light scatter, cells comprising a plastic collar and two plano lenses were filled with solutions of differing concentrations (0.001, 0.002 and 0.004%) of polystyrene microspheres (Polysciences Inc., USA). The adopted light scatter model showed an artifactual increase in venous optical density ratio (p=0.036), with the 0.004% condition producing significantly higher venous optical density ratio values when compared to images without a cell in place. Spectrophotometric analysis, and thus retinal vessel oximetry of the retinal vessels, is altered by artificial light scatter. © 2013 Elsevier Ltd.
Resumo:
Purpose: Diabetes is a leading cause of visual impairment in working age population in the UK. This study looked at the causes of Severe Visual Impairment(SVI) in the patients attending diabetic eye clinic and influence on the rate of SVI, over a 12 year period, after introducing retinal screening programmes in the hospital and the community in 1993 (review in 1992, 1998 & 2004). Methods: Medical records of all the patients attending the diabetic eye clinic over a period of 5months(April to August) in 1992, 1998 and 2004 were reviewed. The data collected for each patient included age, sex, ethnic origin, diabetes (type,duration &treatment), the best corrected visual acuity (present and at time of presentation), type and duration of retinopathy and attendance record to both diabetic clinic and diabetic eye clinic. In this study, SVI is defined as a visual acuity of 6/36 or worse in at least one eye. Results: In 1992, of a total 245 patients, 58patients(23.6%) had SVI {38 (15.5% of total) due to diabetic retinopathy [31(12.6%) maculopathy, 2(0.8%) vitreous haemorrhage and 5(2%) retinal detachment] and 20(8.1%) due to non–diabetic retinopathy causes}. In 1998, of a total 297, 77patients(25.9%) had SVI {33(11.1% of total) due to diabetic retinopathy [19(6.4%) maculopathy, 9(3%) proliferative retinopathy, 8(2.7%) vitreous haemorrhage and 3(1%) retinal detachment]and 44(14.8%)due to non–diabetic retinopathy}. In 2004, of a total 471, 72patients(15.2%) had SVI{46(9.7%of total) due to diabetic retinopathy [37(7.8%) maculopathy, 1(0.2%) proliferative retinopathy, 6(1.8%) vitreous haemorrhage and 2(0.4%) retinal detachment]and 26(5.5%) due to non– diabetic retinopathy causes}. Conclusions: Introduction of formalised annual diabetic review including retinal screening and a community retinal screening programme has reduced the rate of severe visual impairment due to diabetic retinopathy, in patients attending diabetic eye clinic, from 15.5% in1992 to 9.7% in2004. Keywords: diabetic retinopathy
Resumo:
PURPOSE. To establish the optimal flash settings for retinal vessel oxygen saturation parameters using dual-wavelength imaging in a multiethnic group. METHODS. Twelve healthy young subjects (mean age 32 years [SD 7]; three Mediterranean, two South Asian, and seven Caucasian individuals) underwent retinal vessel oxygen saturation measurements using dual-wavelength oximetry, noncontact tonometry, and manual sphygmomanometry. In order to evaluate the impact of flash intensity, we obtained three images (fundus camera angle 30°, ONH centered) per flash setting. Flash settings of the fundus camera were increased in steps of 2 (initial setting of 6 and the final of 22), which reflect logarithmic increasing intensities from 13.5 to 214 Watt seconds (Ws). RESULTS. Flash settings below 27 Ws were too low to obtain saturation measurements, whereas flash settings of more than 214 Ws resulted in overexposed images. Retinal arteriolar and venular oxygen saturation was comparable at flash settings of 27 to 76 Ws (arterioles' range: 85%-92%; venules' range: 45%-53%). Higher flash settings lead to increased saturation measurements in both retinal arterioles (up to 110%) and venules (up to 92%), with a more pronounced increase in venules. CONCLUSIONS. Flash intensity has a significant impact on retinal vessel oxygen saturation measurements using dual-wavelength retinal oximetry. High flash intensities lead to supranormal oxygen saturation measurements with a magnified effect in retinal venules compared with arteries. In addition to even retinal illumination, the correct flash setting is of paramount importance for clinical acquisition of images in retinal oximetry. We recommend flash settings between 27 to 76 Ws. © 2013 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
Purpose: To assess the inter and intra observer variability of subjective grading of the retinal arterio-venous ratio (AVR) using a visual grading and to compare the subjectively derived grades to an objective method using a semi-automated computer program. Methods: Following intraocular pressure and blood pressure measurements all subjects underwent dilated fundus photography. 86 monochromatic retinal images with the optic nerve head centred (52 healthy volunteers) were obtained using a Zeiss FF450+ fundus camera. Arterio-venous ratios (AVR), central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) were calculated on three separate occasions by one single observer semi-automatically using the software VesselMap (ImedosSystems, Jena, Germany). Following the automated grading, three examiners graded the AVR visually on three separate occasions in order to assess their agreement. Results: Reproducibility of the semi-automatic parameters was excellent (ICCs: 0.97 (CRAE); 0.985 (CRVE) and 0.952 (AVR)). However, visual grading of AVR showed inter grader differences as well as discrepancies between subjectively derived and objectively calculated AVR (all p < 0.000001). Conclusion: Grader education and experience leads to inter-grader differences but more importantly, subjective grading is not capable to pick up subtle differences across healthy individuals and does not represent true AVR when compared with an objective assessment method. Technology advancements mean we no longer rely on opthalmoscopic evaluation but can capture and store fundus images with retinal cameras, enabling us to measure vessel calibre more accurately compared to visual estimation; hence it should be integrated in optometric practise for improved accuracy and reliability of clinical assessments of retinal vessel calibres. © 2014 Spanish General Council of Optometry.
Resumo:
Background: Summarised retinal vessel diameters are linked to systemic vascular pathology. Monochromatic images provide best contrast to measure vessel calibres. However, when obtaining images with a dual wavelength oximeter the red-free image can be extracted as the green channel information only which in turn will reduce the number of photographs taken at a given time. This will reduce patient exposure to the camera flash and could provide sufficient quality images to reliably measure vessel calibres. Methods: We obtained retinal images of one eye of 45 healthy participants. Central retinal arteriolar and central retinal venular equivalents (CRAE and CRVE, respectively) were measured using semi-automated software from two monochromatic images: one taken with a red-free filter and one extracted from the green channel of a dual wavelength oximetry image. Results: Participants were aged between 21 and 62 years, all were normotensive (SBP: 115 (12) mmHg; DBP: 72 (10) mmHg) and had normal intra-ocular pressures (12 (3) mmHg). Bland-Altman analysis revealed good agreement of CRAE and CRVE as obtained from both images (mean bias CRAE = 0.88; CRVE = 2.82). Conclusions: Summarised retinal vessel calibre measurements obtained from oximetry images are in good agreement to those obtained using red-free photographs.
Resumo:
PURPOSE: To assess the impact of human crystalline lens opacification and yellowing, similar to that observed in patients with cataracts, on retinal vessel blood oxygen saturation measurements using custom manufactured soft contact lenses. METHODS: Ten healthy, non-smoking individuals were enrolled for this study. All subjects underwent digital blood pressure measurements, assessment of non-contact intra-ocular pressure, pupil dilation and retinal vessel oximetry using dual-wavelength photography (Oximetry Module, Imedos Systems). To simulate lens changes, three different contact lenses were inserted, one to simulate opacities followed by two more lenses to simulate different levels of lens yellowing (Cantor & Nissel). RESULTS: The measurements obtained showed an opposite change in arterial and venous oxygen saturation and optical density ratio across conditions, resulting in a statistically significant difference in arterial minus venous oxygen saturation value (p = 0.003). However, this difference was only significant for the 'opacity' condition but not for the 'yellowing' conditions. CONCLUSION: Lenticular changes such as cataracts can impact on spectrophotometric analysis in particular dual-wavelength retinal vessel oximetry. Hence, lenticular assessment and cataract grading should be considered when assessing elderly individuals and patient groups developing cataract earlier in life such as those suffering from diabetes mellitus.
Resumo:
This study is to theoretically investigate shockwave and microbubble formation due to laser absorption by microparticles and nanoparticles. The initial motivation for this research was to understand the underlying physical mechanisms responsible for laser damage to the retina, as well as the predict threshold levels for damage for laser pulses with of progressively shorter durations. The strongest absorbers in the retina are micron size melanosomes, and their absorption of laser light causes them to accrue very high energy density. I theoretically investigate how this absorbed energy is transferred to the surrounding medium. For a wide range of conditions I calculate shockwave generation and bubble growth as a function of the three parameters; fluence, pulse duration and pulse shape. In order to develop a rigorous physical treatment, the governing equations for the behavior of an absorber and for the surrounding medium are derived. Shockwave theory is investigated and the conclusion is that a shock pressure explanation is likely to be the underlying physical cause of retinal damage at threshold fluences for sub-nanosecond pulses. The same effects are also expected for non-biological micro and nano absorbers. ^
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1303/thumbnail.jpg
Resumo:
OBJECTIVES: To compare the ability of ophthalmologists versus optometrists to correctly classify retinal lesions due to neovascular age-related macular degeneration (nAMD).
DESIGN: Randomised balanced incomplete block trial. Optometrists in the community and ophthalmologists in the Hospital Eye Service classified lesions from vignettes comprising clinical information, colour fundus photographs and optical coherence tomographic images. Participants' classifications were validated against experts' classifications (reference standard).
SETTING: Internet-based application.
PARTICIPANTS: Ophthalmologists with experience in the age-related macular degeneration service; fully qualified optometrists not participating in nAMD shared care.
INTERVENTIONS: The trial emulated a conventional trial comparing optometrists' and ophthalmologists' decision-making, but vignettes, not patients, were assessed. Therefore, there were no interventions and the trial was virtual. Participants received training before assessing vignettes.
MAIN OUTCOME MEASURES: Primary outcome-correct classification of the activity status of a lesion based on a vignette, compared with a reference standard. Secondary outcomes-potentially sight-threatening errors, judgements about specific lesion components and participants' confidence in their decisions.
RESULTS: In total, 155 participants registered for the trial; 96 (48 in each group) completed all assessments and formed the analysis population. Optometrists and ophthalmologists achieved 1702/2016 (84.4%) and 1722/2016 (85.4%) correct classifications, respectively (OR 0.91, 95% CI 0.66 to 1.25; p=0.543). Optometrists' decision-making was non-inferior to ophthalmologists' with respect to the prespecified limit of 10% absolute difference (0.298 on the odds scale). Optometrists and ophthalmologists made similar numbers of sight-threatening errors (57/994 (5.7%) vs 62/994 (6.2%), OR 0.93, 95% CI 0.55 to 1.57; p=0.789). Ophthalmologists assessed lesion components as present less often than optometrists and were more confident about their classifications than optometrists.
CONCLUSIONS: Optometrists' ability to make nAMD retreatment decisions from vignettes is not inferior to ophthalmologists' ability. Shared care with optometrists monitoring quiescent nAMD lesions has the potential to reduce workload in hospitals.
TRIAL REGISTRATION NUMBER: ISRCTN07479761; pre-results registration.
Resumo:
Recent advances in mobile phone cameras have poised them to take over compact hand-held cameras as the consumer’s preferred camera option. Along with advances in the number of pixels, motion blur removal, face-tracking, and noise reduction algorithms have significant roles in the internal processing of the devices. An undesired effect of severe noise reduction is the loss of texture (i.e. low-contrast fine details) of the original scene. Current established methods for resolution measurement fail to accurately portray the texture loss incurred in a camera system. The development of an accurate objective method to identify the texture preservation or texture reproduction capability of a camera device is important in this regard. The ‘Dead Leaves’ target has been used extensively as a method to measure the modulation transfer function (MTF) of cameras that employ highly non-linear noise-reduction methods. This stochastic model consists of a series of overlapping circles with radii r distributed as r−3, and having uniformly distributed gray level, which gives an accurate model of occlusion in a natural setting and hence mimics a natural scene. This target can be used to model the texture transfer through a camera system when a natural scene is captured. In the first part of our study we identify various factors that affect the MTF measured using the ‘Dead Leaves’ chart. These include variations in illumination, distance, exposure time and ISO sensitivity among others. We discuss the main differences of this method with the existing resolution measurement techniques and identify the advantages. In the second part of this study, we propose an improvement to the current texture MTF measurement algorithm. High frequency residual noise in the processed image contains the same frequency content as fine texture detail, and is sometimes reported as such, thereby leading to inaccurate results. A wavelet thresholding based denoising technique is utilized for modeling the noise present in the final captured image. This updated noise model is then used for calculating an accurate texture MTF. We present comparative results for both algorithms under various image capture conditions.
Resumo:
Purpose: RPE lysosomal dysfunction is a major contributor to AMD pathogenesis. Controlled activity of a major class of RPE proteinases, the cathepsins, is crucial in maintaining correct lysosomal function. Advanced glycation end-products (AGEs) accumulate in the Bruch’s membrane (BM) with age, impacting critical RPE functions and in turn, contributing to the development of AMD. The aim of this study was to assess the effect of AGEs on lysosomal function by analysing the expression, processing and activity of the cysteine proteinases cathepsins B, L and S, and the aspartic proteinase cathepsin D. Methods: ARPE-19 cells were cultured on AGE-containing BM mimics (matrigel) for 14 days and compared to untreated substrate. Expression levels and intracellular processing of cathepsins B, D, L and S, were assessed by qPCR and immunoblotting of cell lysates. Lysosomal activity was investigated using multiple activity assays specific to each of the analysed cathepsins. Statistical analysis was performed using the Student’s independent T-test. Results: AGE exposure produced a 36% decrease in cathepsin L activity when compared to non-treated controls (p=0.02, n= 3) although no significant changes were observed in protein expression/processing under these conditions. Both the pro and active forms of cathepsin S decreased by 40% (p=0.04) and 74% (p=0.004), respectively (n=3). In contrast, the active form of the cathepsin D increased by 125% (p=0.005, n= 4). However, no changes were observed in the activity levels of both cathepsins S and D. In addition, cathepsin B expression, processing and activity also remained unaltered following AGE exposure. Conclusions: AGEs accumulation in the extracellular matrix, a phenomenon associated with the natural aging process of the BM, attenuates the expression, intracellular processing and activity of specific lysosomal effectors. Altered enzymatic function may impair important lysosomal processes such as endocytosis, autophagy and phagocytosis of photoreceptor outer segments, each of which may influence the age-related dysfunction of the RPE and subsequently, AMD pathogenesis.