901 resultados para non-alloy welding steel
Resumo:
The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.
Resumo:
This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm 3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.
Resumo:
The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.
Resumo:
Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.
Resumo:
The main objective of this work was to evaluate the hypothesis that the greater transfer stability leads also to less volume of fumes. Using an Ar + 25%CO2 blend as shielding gas and maintaining constant the average current, wire feed speed and welding speed, bead-on-plate welds were carried out with plain carbon steel solid wire. The welding voltage was scanned to progressively vary the transfer stability. Using two conditions of low stability and one with high stability, fume generation was evaluated by means of the AWS F1.2:2006 standard. The influence of these conditions on fume morphology and composition was also verified. A condition with greater transfer stability does not generate less fume quantity, despite the fact that this condition produces fewer spatters. Other factors such as short-circuit current, arcing time, droplet diameters and arc length are the likely governing factors, but in an interrelated way. Metal transfer stability does not influence either the composition or the size/morphology of fume particulates. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
Resumo:
The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.
Resumo:
In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the use of a Control Banding Tool to assess and further control of exposure of nanoparticles emitted during welding operations. The tool was applied to Metal Active Gas (MAG) arc welding of mild and stainless steel, providing semi-quantitative data on the process, so that protection measures could be derived, e.g. exhaust gas ventilation by hoods, local ventilation devices and containment measures. This tool is quite useful to compare and evaluate the characteristics of arc welding procedures so that more eco-friendly processes could be preferred over the more potentially noxious ones.
Resumo:
Este trabalho foi realizado na Scania CV AB e teve como principal objectivo estabelecer uma diretriz sobre a possível utilização de aços vazados. Existe uma grande necessidade na realização deste trabalho, de forma a apoiar os engenheiros de projecto no seu processo de selecção dos materiais mais adequados, para produzir componentes mais leves e de elevado desempenho. Esta diretriz apresenta informação relacionada com propriedades mecânicas, processos de fundição, vazabilidade, tipologia de defeitos, tratamentos térmicos, soldabilidade e tratamentos superficiais dos aços vazados. Este trabalho foi limitado, na seleção de materiais para componentes do camião, a aços vazados que poderiam ser aplicados em dois componentes específicos: um componente estrutural da carroçaria sujeito a esforços de fadiga e a um colector de gases de combustão, sujeito a fluência, oxidação, fadiga por corrosão, fadiga-térmica e fadiga-mecânica. Foi realizado um benchmark focado nestes dois componentes de forma a saber que materiais são utilizados de momento por outras empresas concorrentes. Foi realizada ainda uma análise sobre possíveis materiais que possam ser aplicados em cada componente referido. Foi conduzida uma caracterização no estado bruto de fundição de um aço inoxidável vazado usado para produzir um protótipo do colector de gases. Esta caracterização consistiu numa análise microestrutural e medição de macro e microdurezas. Além da caracterização inicial, foram aplicados um conjunto de tratamentos térmicos, de forma a estudar a possibilidade de eliminar os carbonetos presentes inicialmente nas fronteiras de grão. As principais conclusões deste trabalho são que o aço vazado apresenta potencial para ser uma escolha válida em diversas aplicações, devido a um leque alargado de propriedades apresentadas tipicamente por este material. Relativamente a aplicações estruturais, o aço vazado é vantajoso comparativamente ao ferro fundido, quando são requeridos, por exemplo, soldabilidade e elevada resistência, combinada com elevada tenacidade à fractura. Para componentes sujeitos a elevadas temperaturas de serviço, o aço inoxidável vazado é vantajoso quando usado a temperaturas superiores a 750°C, apesar do seu elevado custo. O tratamento térmico composto por um recozimento de solubilização seguido de envelhecimento, elimina quase na totalidade os carbonetos presentes nas fronteiras de grão e verifica-se um aumento de dureza através de uma precipitação de carbonetos finamente dispersos na matriz, que poderão também aumentar a resistência à fluência.
Resumo:
A indústria metalomecânica nacional possui uma larga tradição no fabrico de equipamentos de elevada qualidade nas mais diversas vertentes. Seja em moldes, colunas de geradores de energia eólica, torres de telecomunicações, equipamento para a agropecuária, básculas de camiões ou simplesmente em silos, a indústria metalomecânica portuguesa é reconhecida internacionalmente pela sua competitividade e qualidade. Sectores como o da maquinagem, estampagem e soldadura mantêm viva a economia nacional, exportando produtos e serviços de engenharia que são largamente reconhecidos pelas empresas estrangeiras, tanto na Europa como em África e na América. O sector da construção soldada teve sempre uma forte tradição no nosso país, conhecendo um novo impulso com o fabrico de estruturas metálicas para geradores de energia eólica e torres de telecomunicações. Atualmente esta indústria mantém viva a sua atividade devido a um forte ’know-how’ nesta matéria e a uma qualidade invejável. Apesar do forte ‘know-how’ já existente, esta indústria está constantemente a ser solicitada para novos desafios, passando pela necessidade da aplicação de novos materiais os quais trazem sempre requisitos específicos aos processos, necessitando ser estudados com pormenor. Este estudo baseia-se na necessidade de uma empresa industrial portuguesa precisar de realizar equipamentos em construção soldada com base em aço do tipo Cr-Mo, grau 91, cuja soldadura é tradicionalmente bastante complicada. A realização dos adequados tratamentos ao material, quer antes, quer depois da soldadura, são a garantia de que a qualidade final do produto atinge os níveis exigidos pelos clientes. Assim, o presente estudo, com uma forte componente experimental, permitiu determinar com sucesso quais as melhores condições para o ciclo térmico na soldadura que podem ser aplicadas a esta liga, para que os resultados obtidos possam exibir a qualidade desejada.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
Al-Cu alloys are widely used in the aerospace and automotive industries due to their high specific strength in some tempered conditions. However, due to poor corrosion and wear resistance, they are often anodized and/or painted. Plasma nitriding has been proposed as an alternative, though the developments in this technique are still in a recent stage for Al alloys. Electrical characterization techniques are well implemented NDTs in the industry because of good accuracy associated with lower cost, compared to other methods. Some, like eddy currents and 4-point probe techniques, are often used in coating inspection. The objective of this study was to perform Al nitriding at low temperatures to minimize the tempering initial condition damage and to assess the feasibility of eddy currents technique as a method for evaluating surface properties. The work developed can be divided in two stages. The first one was the process tuning, done at the Shibaura Institute of Technology, in Tokyo; and the second was the electrical characterization done in Faculdade de Ciências e Tecnologia, UNL. Low temperature nitriding of AA2011 alloy specimens was successfully achieved. Electrical conductivity results show that lift-off measurements by eddy currents testing can be related to surface properties.
Resumo:
Recent research is showing that the addition of Recycled Steel Fibres (RSF) from wasted tyres can decrease significantly the brittle behaviour of cement based materials, by improving its toughness and post-cracking resistance. In this sense, Recycled Steel Fibre Reinforced Concrete (RSFRC) seems to have the potential to constitute a sustainable material for structural and non-structural applications. To assess this potential, experimental and numerical research was performed on the use of RSFRC in elements failing in bending and in beams failing in shear. The values of the fracture mode I parameters of the developed RSFRC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To assess the possibility of using RSF as shear reinforcement in Reinforced Concrete (RC) beams, three point bending tests were executed with three series of RSFRC beams flexurally reinforced with a relatively high reinforcement ratio of longitudinal steel bars in order to assure shear failure for all the tested beams. By performing material nonlinear simulations with a computer program based on the finite element method (FEM), the applicability of the fracture mode I crack constitutive law derived from the inverse analysis is assessed for the prediction of the behaviour of these beams. The performance of the formulation proposed by RILEM TC 162 TDF and CEB-FIP 2010 for the prediction of the shear resistance of fibre reinforced concrete elements was also evaluated.