992 resultados para noise reduction
Resumo:
Acute acoustic trauma (AAT) is a sudden sensorineural hearing loss caused by exposure of the hearing organ to acoustic overstimulation, typically an intense sound impulse, hyperbaric oxygen therapy (HOT), which favors repair of the microcirculation, can be potentially used to treat it. Hence, this study aimed to assess the effects of HOT on guinea pigs exposed to acoustic trauma. Fifteen guinea pigs were exposed to noise in the 4-kHz range with intensity of 110 dB sound level pressure for 72 h. They were assessed by brainstem auditory evoked potential (BAEP) and by distortion product otoacoustic emission (DPOAE) before and after exposure and after HOT at 2.0 absolute atmospheres for 1 h. The cochleae were then analyzed using scanning electron microscopy (SEM). There was a statistically significant difference in the signal-to-noise ratio of the DPOAE amplitudes for the 1- to 4-kHz frequencies and the SEM findings revealed damaged outer hair cells (OHC) after exposure to noise, with recovery after HOT (p = 0.0159), which did not occur on thresholds and amplitudes to BAEP (p = 0.1593). The electrophysiological BAEP data did not demonstrate effectiveness of HOT against AAT damage. However, there was improvement of the anatomical pattern of damage detected by SEM, with a significant reduction of the number of injured cochlear OHC and their functionality detected by DPOAE.
Resumo:
Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.
Resumo:
OBJECTIVE: The purpose of this article is to assess the effect of the adaptive statistical iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and to evaluate its potential for reducing radiation dose. SUBJECTS AND METHODS: Thirty-seven patients examined with hip MDCT arthrography were prospectively randomized into three different protocols: one with a regular dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to-noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated several anatomic structures and image quality parameters using a 4-point scale. They also jointly assessed acetabular labrum tears and articular cartilage lesions. RESULTS: With decreasing radiation dose level, image noise statistically significantly increased (p=0.0009) and CNR statistically significantly decreased (p=0.001). We also found a statistically significant reduction in noise (p=0.0001) and increase in CNR (p≤0.003) with increasing percentage of ASIR; in addition, we noted statistically significant increases in image quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality (up to 50% ASIR), and subjective noise (p≤0.04), and statistically significant reductions for the trabecular bone and muscles (p≤0.03). Regardless of the radiation dose level, there were no statistically significant differences in the detection and characterization of labral tears (n=24; p=1) and cartilage lesions (n=40; p≥0.89) depending on the ASIR percentage. CONCLUSION: The use of up to 50% ASIR in hip MDCT arthrography helps to reduce radiation dose by approximately 35-60%, while maintaining diagnostic image quality comparable to that of a regular-dose protocol using FBP.
Resumo:
The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters.A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed.In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements.The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.
Resumo:
This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.
Resumo:
Electrical machine drives are the most electrical energy-consuming systems worldwide. The largest proportion of drives is found in industrial applications. There are, however many other applications that are also based on the use of electrical machines, because they have a relatively high efficiency, a low noise level, and do not produce local pollution. Electrical machines can be classified into several categories. One of the most commonly used electrical machine types (especially in the industry) is induction motors, also known as asynchronous machines. They have a mature production process and a robust rotor construction. However, in the world pursuing higher energy efficiency with reasonable investments not every application receives the advantage of using this type of motor drives. The main drawback of induction motors is the fact that they need slipcaused and thus loss-generating current in the rotor, and additional stator current for magnetic field production along with the torque-producing current. This can reduce the electric motor drive efficiency, especially in low-speed, low-power applications. Often, when high torque density is required together with low losses, it is desirable to apply permanent magnet technology, because in this case there is no need to use current to produce the basic excitation of the machine. This promotes the effectiveness of copper use in the stator, and further, there is no rotor current in these machines. Again, if permanent magnets with a high remanent flux density are used, the air gap flux density can be higher than in conventional induction motors. These advantages have raised the popularity of PMSMs in some challenging applications, such as hybrid electric vehicles (HEV), wind turbines, and home appliances. Usually, a correctly designed PMSM has a higher efficiency and consequently lower losses than its induction machine counterparts. Therefore, the use of these electrical machines reduces the energy consumption of the whole system to some extent, which can provide good motivation to apply permanent magnet technology to electrical machines. However, the cost of high performance rare earth permanent magnets in these machines may not be affordable in many industrial applications, because the tight competition between the manufacturers dictates the rules of low-cost and highly robust solutions, where asynchronous machines seem to be more feasible at the moment. Two main electromagnetic components of an electrical machine are the stator and the rotor. In the case of a conventional radial flux PMSM, the stator contains magnetic circuit lamination and stator winding, and the rotor consists of rotor steel (laminated or solid) and permanent magnets. The lamination itself does not significantly influence the total cost of the machine, even though it can considerably increase the construction complexity, as it requires a special assembly arrangement. However, thin metal sheet processing methods are very effective and economically feasible. Therefore, the cost of the machine is mainly affected by the stator winding and the permanent magnets. The work proposed in this doctoral dissertation comprises a description and analysis of two approaches of PMSM cost reduction: one on the rotor side and the other on the stator side. The first approach on the rotor side includes the use of low-cost and abundant ferrite magnets together with a tooth-coil winding topology and an outer rotor construction. The second approach on the stator side exploits the use of a modular stator structure instead of a monolithic one. PMSMs with the proposed structures were thoroughly analysed by finite element method based tools (FEM). It was found out that by implementing the described principles, some favourable characteristics of the machine (mainly concerning the machine size) will inevitable be compromised. However, the main target of the proposed approaches is not to compete with conventional rare earth PMSMs, but to reduce the price at which they can be implemented in industrial applications, keeping their dimensions at the same level or lower than those of a typical electrical machine used in the industry at the moment. The measurement results of the prototypes show that the main performance characteristics of these machines are at an acceptable level. It is shown that with certain specific actions it is possible to achieve a desirable efficiency level of the machine with the proposed cost reduction methods.
Resumo:
This paper considers a connection between the deterministic and noisy behavior of nonlinear networks. Specifically, a particular bridge circuit is examined which has two possibly nonlinear energy storage elements. By proper choice of the constitutive relations for the network elements, the deterministic terminal behavior reduces to that of a single linear resistor. This reduction of the deterministic terminal behavior, in which a natural frequency of a linear circuit does not appear in the driving-point impedance, has been shown in classical circuit theory books (e.g. [1, 2]). The paper shows that, in addition to the reduction of the deterministic behavior, the thermal noise at the terminals of the network, arising from the usual Nyquist-Johnson noise model associated with each resistor in the network, is also exactly that of a single linear resistor. While this result for the linear time-invariant (LTI) case is a direct consequence of a well-known result for RLC circuits, the nonlinear result is novel. We show that the terminal noise current is precisely that predicted by the Nyquist-Johnson model for R if the driving voltage is zero or constant, but not if the driving voltage is time-dependent or the inductor and capacitor are time-varying
Resumo:
A study of strial capillary permeability using fluorescent microspheres and immunohistochemistry in mice that do or do not exhibit a reduction in endocochlear potential following a single, intense noise exposure.
Resumo:
Background noise should in theory hinder detection of auditory cues associated with approaching danger. We tested whether foraging chaffinches Fringilla coelebs responded to background noise by increasing vigilance, and examined whether this was explained by predation risk compensation or by a novel stimulus hypothesis. The former predicts that only inter-scan interval should be modified in the presence of background noise, not vigilance levels generally. This is because noise hampers auditory cue detection and increases perceived predation risk primarily when in the head-down position, and also because previous tests have shown that only interscan interval is correlated with predator detection ability in this system. Chaffinches only modified interscan interval supporting this hypothesis. At the same time they made significantly fewer pecks when feeding during the background noise treatment and so the increased vigilance led to a reduction in intake rate, suggesting that compensating for the increased predation risk could indirectly lead to a fitness cost. Finally, the novel stimulus hypothesis predicts that chaffinches should habituate to the noise, which did not occur within a trial or over 5 subsequent trials. We conclude that auditory cues may be an important component of the trade-off between vigilance and feeding, and discuss possible implications for anti-predation theory and ecological processes
Resumo:
There is considerable interest in the use of porous asphalt (PA) surfacing on highways since physical and subjective assessments of noise have indicated a significant advantage over conventional non-porous surfaces such as hot rolled asphalt (HRA) used widely for motorway surfacing in the UK. However, it was not known whether the benefit of the PA surface was affected by the presence of roadside barriers. Noise predictions have been made using the Boundary Element Method (BEM) approach to determine the extent to which the noise reducing benefits of PA could be added to the screening effects of noise barriers in order to obtain the overall reduction in noise levels
Resumo:
Prism is a modular classification rule generation method based on the ‘separate and conquer’ approach that is alternative to the rule induction approach using decision trees also known as ‘divide and conquer’. Prism often achieves a similar level of classification accuracy compared with decision trees, but tends to produce a more compact noise tolerant set of classification rules. As with other classification rule generation methods, a principle problem arising with Prism is that of overfitting due to over-specialised rules. In addition, over-specialised rules increase the associated computational complexity. These problems can be solved by pruning methods. For the Prism method, two pruning algorithms have been introduced recently for reducing overfitting of classification rules - J-pruning and Jmax-pruning. Both algorithms are based on the J-measure, an information theoretic means for quantifying the theoretical information content of a rule. Jmax-pruning attempts to exploit the J-measure to its full potential because J-pruning does not actually achieve this and may even lead to underfitting. A series of experiments have proved that Jmax-pruning may outperform J-pruning in reducing overfitting. However, Jmax-pruning is computationally relatively expensive and may also lead to underfitting. This paper reviews the Prism method and the two existing pruning algorithms above. It also proposes a novel pruning algorithm called Jmid-pruning. The latter is based on the J-measure and it reduces overfitting to a similar level as the other two algorithms but is better in avoiding underfitting and unnecessary computational effort. The authors conduct an experimental study on the performance of the Jmid-pruning algorithm in terms of classification accuracy and computational efficiency. The algorithm is also evaluated comparatively with the J-pruning and Jmax-pruning algorithms.
Resumo:
Ships and wind turbines generate noise, which can have a negative impact on marine mammal populations by scaring animals away. Effective modelling of how this affects the populations has to take account of the location and timing of disturbances. Here we construct an individual-based model of harbour porpoises in the Inner Danish Waters. Individuals have their own energy budgets constructed using established principles of physiological ecology. Data are lacking on the spatial distribution of food which is instead inferred from knowledge of time-varying porpoise distributions. The model produces plausible patterns of population dynamics and matches well the age distribution of porpoises caught in by-catch. It estimates the effect of existing wind farms as a 10% reduction in population size when food recovers fast (after two days). Proposed new wind farms and ships do not result in further population declines. The population is however sensitive to variations in mortality resulting from by-catch and to the speed at which food recovers after being depleted. If food recovers slowly the effect of wind turbines becomes negligible, whereas ships are estimated to have a significant negative impact on the population. Annual by-catch rates ≥10% lead to monotonously decreasing populations and to extinction, and even the estimated by-catch rate from the adjacent area (approximately 4.1%) has a strong impact on the population. This suggests that conservation efforts should be more focused on reducing by-catch in commercial gillnet fisheries than on limiting the amount of anthropogenic noise. Individual-based models are unique in their ability to take account of the location and timing of disturbances and to show their likely effects on populations. The models also identify deficiencies in the existing database and can be used to set priorities for future field research.
Resumo:
Low-frequency noise in an electrolyte-insulator- semiconductor (EIS) structure functionalized with multilayers of polyamidoamine (PAMAM) dendrimer and single-walled carbon nanotubes (SWNT) is studied. The noise spectral density exhibits 1/f(gamma) dependence with the power factor of gamma approximate to 0.8 and gamma = 0.8-1.8 for the bare and functionalized EIS sensor, respectively. The gate-voltage noise spectral density is practically independent of the pH value of the solution and increases with increasing gate voltage or gate-leakage current. It has been revealed that functionalization of an EIS structure with a PAMAM/SWNTs multilayer leads to an essential reduction of the 1/f noise. To interpret the noise behavior in bare and functionalized EIS devices, a gate-current noise model for capacitive EIS structures based on an equivalent flatband-voltage fluctuation concept has been developed.
Resumo:
An experimental investigation of the noise generated by cavitation in turbulent shear flows produced by confined sharp-edge orifice-plates is reported. The acoustic source strength of cavitation was determined by means of reciprocity type measurements. Experimentally determined scaling parameters are applied to a model to prototype scaling formula derived from dimensional analysis. The proposed formula is checked experimentally. Comparative photographic observations of the cavitation patterns for two different values of gas content are presented. The observed sound reduction, that occurs when supersaturated conditions exist downstream the orifice-plates, is explained by the effects of gas diffusion into the cavitation bubbles, and by simple acoustic attenuation.
Resumo:
Wavelets are being extensively used in Geodetic applications. In this paper, the Multi-Resolution Analysis (MRA) using wavelets is applied to pseudorange and carrier phase GPS double differences (DDs) in order to reduce multipath effects. The wavelets were already applied to GPS carrier phase DDs, but some questions remain: How good can be the results, and are all multipath effects reduced? The answers to these questions are discussed in this paper. Thus, the wavelet transform is used to decompose the DD signals, splitting them in lower resolution components. After the decomposition process, the wavelet shrinkage is performed by thresholding to eliminate the components relative to multipath effects. Then, the DD observation can be reconstructed. This new DD signal is used to perform the baseline processing. The daily multipath repeatability was verified. With the application of the proposed approach, the results showed that the reliability of the ambiguity resolution and accuracy of the results improved when compared with the standard procedure. Furthermore, the method showed to be very efficient computationally, because, it is not noticed, at practical level, difference in the time span between the processing with and without application of the proposed method. However, only the high frequency multipath was eliminated.