827 resultados para neuron
Resumo:
A proportion of patients with motor neuron disease (MND) exhibit frontotemporal dementia (FTD) and some patients with FTD develop the clinical features of MND. Frontotemporal lobar degeneration (FTLD) is the pathological substrate of FTD and some forms of this disease (referred to as FTLD-U) share with MND the common feature of ubiquitin-immunoreactive, tau-negative cellular inclusions in the cerebral cortex and hippocampus. Recently, the transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) has been found to be a major protein of the inclusions of FTLD-U with or without MND and these cases are referred to as FTLD with TDP-43 proteinopathy (FTLD-TDP). To clarify the relationship between MND and FTLD-TDP, TDP-43 pathology was studied in nine cases of FTLD-MND and compared with cases of familial and sporadic FTLD-TDP without associated MND. A principal components analysis (PCA) of the nine FTLD-MND cases suggested that variations in the density of surviving neurons in the frontal cortex and neuronal cytoplasmic inclusions (NCI) in the dentate gyrus (DG) were the major histological differences between cases. The density of surviving neurons in FTLD-MND was significantly less than in FTLD-TDP cases without MND, and there were greater densities of NCI but fewer neuronal intranuclear inclusions (NII) in some brain regions in FTLD-MND. A PCA of all FTLD-TDP cases, based on TDP-43 pathology alone, suggested that neuropathological heterogeneity was essentially continuously distributed. The FTLD-MND cases exhibited consistently high loadings on PC2 and overlapped with subtypes 2 and 3 of FTLD-TDP. The data suggest: (1) FTLD-MND cases have a consistent pathology, variations in the density of NCI in the DG being the major TDP-43-immunoreactive difference between cases, (2) there are considerable similarities in the neuropathology of FTLD-TDP with and without MND, but with greater neuronal loss in FTLD-MND, and (3) FTLD-MND cases are part of the FTLD-TDP 'continuum' overlapping with FTLD-TDP disease subtypes 2 and 3. © 2012 Nova Science Publishers, Inc. All rights reserved.
Resumo:
There is currently great scientific and medical interest in the potential of tissue grown from stem cells. These cells present opportunities for generating model systems for drug screening and toxicological testing which would be expected to be more relevant to human outcomes than animal based tissue preparations. Newly realised astrocytic roles in the brain have fundamental implications within the context of stem cell derived neuronal networks. If the aim of stem cell neuroscience is to generate functional neuronal networks that behave as networks do in the brain, then it becomes clear that we must include and understand all the cellular components that comprise that network, and which are important to support synaptic integrity and cell to cell signalling. We have shown that stem cell derived neurons exhibit spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling (1). Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, astrocytes exhibit morphology and functional properties consistent with this glial cell type. Astrocytes also respond to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. Astroctyes also generate propagating calcium waves that are gap junction and purinergic signalling dependent. Our results show that stem cell derived astrocytes exhibit appropriate functionality and that stem cell neuronal networks interact with astrocytic networks in co-culture. Using mixed cultures of stem cell derived neurons and astrocytes, we have also shown both cell types also modulate their glucose uptake, glycogen turnover and lactate production in response to glutamate as well as increased neuronal activity (2). This finding is consistent with their neuron-astrocyte metabolic coupling thus demonstrating a tractable human model, which will facilitate the study of the metabolic coupling between neurons and astrocytes and its relationship with CNS functional issues ranging from plasticity to neurodegeneration. Indeed, cultures treated with oligomers of amyloid beta 1-42 (Aβ1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose (3). Both co-cultures of neurons and astrocytes and purified cultures of astrocytes showed a significant decrease in glucose uptake after treatment with 2 and 0.2 μmol/L Aβ at all time points investigated (p <0.01). In addition, a significant increase in the glycogen content of cells was also measured. Mixed neuron and astrocyte co-cultures as well as pure astrocyte cultures showed an initial decrease in glycogen levels at 6 hours compared with control at 0.2 μmol/L and 2 μmol/L P <0.01. These changes were accompanied by changes in NAD+/NADH (P<0.05), ATP (P<0.05), and glutathione levels (P<0.05), suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aβ-induced hypometabolism. As numerous cell types interact in the brain it is important that any in vitro model developed reflects this arrangement. Our findings indicate that stem cell derived neuron and astrocyte networks can communicate, and so have the potential to interact in a tripartite manner as is seen in vivo. This study therefore lays the foundation for further development of stem cell derived neurons and astrocytes into therapeutic cell replacement and human toxicology/disease models. More recently our data provides evidence for a detrimental effect of Aβ on carbohydrate metabolism in both neurons and astrocytes. As a purely in vitro system, human stem cell models can be readily manipulated and maintained in culture for a period of months without the use of animals. In our laboratory cultures can be maintained in culture for up to 12 months months thus providing the opportunity to study the consequences of these changes over extended periods of time relevant to aspects of the disease progression time frame in vivo. In addition, their human origin provides a more realistic in vitro model as well as informing other human in vitro models such as patient-derived iPSC.
Resumo:
Background A developing body of evidence has provided valuable insight into the experiences of caregivers of people with motor neuron disease; however, understandings of how best to support caregivers remain limited.
Aim This study sought to understand concepts related to the motor neuron disease caregiver experience which could inform the development of supportive interventions.
Design A qualitative thematic analysis of a one-off semistructured interview with caregivers was undertaken.
Setting/participants Caregivers of people with motor neuron disease were recruited from a progressive neurological diseases clinic in Melbourne, Australia.
Results 15 caregivers participated. Three key themes were identified: (1) The Thief: the experience of loss and grief across varied facets of life; (2) The Labyrinth: finding ways to address ever changing challenges as the disease progressed; (3) Defying fate: being resilient and hopeful as caregivers tried to make the most of the time remaining.
Conclusions Caregivers are in need of more guidance and support to cope with experiences of loss and to adapt to changeable care giving duties associated with disease progression. Therapeutic interventions which target these experiences of loss and change are worth investigation.
Resumo:
Sound localisation is defined as the ability to identify the position of a sound source. The brain employs two cues to achieve this functionality for the horizontal plane, interaural time difference (ITD) by means of neurons in the medial superior olive (MSO) and interaural intensity difference (IID) by neurons of the lateral superior olive (LSO), both located in the superior olivary complex of the auditory pathway. This paper presents spiking neuron architectures of the MSO and LSO. An implementation of the Jeffress model using spiking neurons is presented as a representation of the MSO, while a spiking neuron architecture showing how neurons of the medial nucleus of the trapezoid body interact with LSO neurons to determine the azimuthal angle is discussed. Experimental results to support this work are presented.
Resumo:
We study a minimal integrate-and-fire based model of a "ghostbursting" neuron under periodic stimulation. These neurons are involved in sensory processing in weakly electric fish. There exist regions in parameter space in which the model neuron is mode-locked to the stimulation. We analyse this locked behavior and examine the bifurcations that define the boundaries of these regions. Due to the discontinuous nature of the flow, some of these bifurcations are nonsmooth. This exact analysis is in excellent agreement with numerical simulations, and can be used to understand the response of such a model neuron to biologically realistic input.
Resumo:
The presence of gap junction coupling among neurons of the central nervous systems has been appreciated for some time now. In recent years there has been an upsurge of interest from the mathematical community in understanding the contribution of these direct electrical connections between cells to large-scale brain rhythms. Here we analyze a class of exactly soluble single neuron models, capable of producing realistic action potential shapes, that can be used as the basis for understanding dynamics at the network level. This work focuses on planar piece-wise linear models that can mimic the firing response of several different cell types. Under constant current injection the periodic response and phase response curve (PRC) is calculated in closed form. A simple formula for the stability of a periodic orbit is found using Floquet theory. From the calculated PRC and the periodic orbit a phase interaction function is constructed that allows the investigation of phase-locked network states using the theory of weakly coupled oscillators. For large networks with global gap junction connectivity we develop a theory of strong coupling instabilities of the homogeneous, synchronous and splay state. For a piece-wise linear caricature of the Morris-Lecar model, with oscillations arising from a homoclinic bifurcation, we show that large amplitude oscillations in the mean membrane potential are organized around such unstable orbits.
Resumo:
Understanding the mode-locked response of excitable systems to periodic forcing has important applications in neuroscience. For example it is known that spatially extended place cells in the hippocampus are driven by the theta rhythm to generate a code conveying information about spatial location. Thus it is important to explore the role of neuronal dendrites in generating the response to periodic current injection. In this paper we pursue this using a compartmental model, with linear dynamics for each compartment, coupled to an active soma model that generates action potentials. By working with the piece-wise linear McKean model for the soma we show how the response of the whole neuron model (soma and dendrites) can be written in closed form. We exploit this to construct a stroboscopic map describing the response of the spatially extended model to periodic forcing. A linear stability analysis of this map, together with a careful treatment of the non-differentiability of the soma model, allows us to construct the Arnol'd tongue structure for 1:q states (one action potential for q cycles of forcing). Importantly we show how the presence of quasi-active membrane in the dendrites can influence the shape of tongues. Direct numerical simulations confirm our theory and further indicate that resonant dendritic membrane can enlarge the windows in parameter space for chaotic behavior. These simulations also show that the spatially extended neuron model responds differently to global as opposed to point forcing. In the former case spatio-temporal patterns of activity within an Arnol'd tongue are standing waves, whilst in the latter they are traveling waves.
Resumo:
The androgen receptor (AR) is a ligand-activated transcription factor of the nuclear receptor superfamily that plays a critical role in male physiology and pathology. Activated by binding of the native androgens testosterone and 5-dihydrotestosterone, the AR regulates transcription of genes involved in the development and maintenance of male phenotype and male reproductive function as well as other tissues such as bone and muscle. Deregulation of AR signaling can cause a diverse range of clinical conditions, including the X-linked androgen insensitivity syndrome, a form of motor neuron disease known as Kennedy’s disease, and male infertility. In addition, there is now compelling evidence that the AR is involved in all stages of prostate tumorigenesis including initiation, progression, and treatment resistance. To better understand the role of AR signaling in the pathogenesis of these conditions, it is important to have a comprehensive understanding of the key determinants of AR structure and function. Binding of androgens to the AR induces receptor dimerization, facilitating DNA binding and the recruitment of cofactors and transcriptional machinery to regulate expression of target genes. Various models of dimerization have been described for the AR, the most well characterized interaction being DNA-binding domain- mediated dimerization, which is essential for the AR to bind DNA and regulate transcription. Additional AR interactions with potential to contribute to receptor dimerization include the intermolecular interaction between the AR amino terminal domain and ligand-binding domain known as the N-terminal/C-terminal interaction, and ligand-binding domain dimerization. In this review, we discuss each form of dimerization utilized by the AR to achieve transcriptional competence and highlight that dimerization through multiple domains is necessary for optimal AR signaling.
Resumo:
A Nonverbal Learning Disability is believed to be caused by damage, disorder or destruction of neuronal white matter in the brain’s right hemisphere and may be seen in persons experiencing a wide range of neurological diseases such as hydrocephalus and other types of brain injury (Harnadek & Rourke 1994). This article probes the relationship between shunted hydrocephalus and Nonverbal Learning Disability. Description of hydrocephalus and intelligence associated with hydrocephalus concludes with explication of the ‘final common pathway’ that links residual damage caused by the hydrocephalic condition to a Nonverbal Learning Disability (Rourke & Del Dotto 1994, p. 37). The paper seeks to assist teachers, teacher aides, psychologists, guidance officers, support workers, parents and disability service providers whose role is to understand and advocate for individuals with shunted hydrocephalus and spina bifida.
Resumo:
Here we present a sequential Monte Carlo (SMC) algorithm that can be used for any one-at-a-time Bayesian sequential design problem in the presence of model uncertainty where discrete data are encountered. Our focus is on adaptive design for model discrimination but the methodology is applicable if one has a different design objective such as parameter estimation or prediction. An SMC algorithm is run in parallel for each model and the algorithm relies on a convenient estimator of the evidence of each model which is essentially a function of importance sampling weights. Other methods for this task such as quadrature, often used in design, suffer from the curse of dimensionality. Approximating posterior model probabilities in this way allows us to use model discrimination utility functions derived from information theory that were previously difficult to compute except for conjugate models. A major benefit of the algorithm is that it requires very little problem specific tuning. We demonstrate the methodology on three applications, including discriminating between models for decline in motor neuron numbers in patients suffering from neurological diseases such as Motor Neuron disease.
Resumo:
Objective: To assess the relationship between Bayesian MUNE and histological motor neuron counts in wild-type mice and in an animal model of ALS. Methods: We performed Bayesian MUNE paired with histological counts of motor neurons in the lumbar spinal cord of wild-type mice and transgenic SOD1 G93A mice that show progressive weakness over time. We evaluated the number of acetylcholine endplates that were innervated by a presynaptic nerve. Results: In wild-type mice, the motor unit number in the gastrocnemius muscle estimated by Bayesian MUNE was approximately half the number of motor neurons in the region of the spinal cord that contains the cell bodies of the motor neurons supplying the hindlimb crural flexor muscles. In SOD1 G93A mice, motor neuron numbers declined over time. This was associated with motor endplate denervation at the end-stage of disease. Conclusion: The number of motor neurons in the spinal cord of wild-type mice is proportional to the number of motor units estimated by Bayesian MUNE. In SOD1 G93A mice, there is a lower number of estimated motor units compared to the number of spinal cord motor neurons at the end-stage of disease, and this is associated with disruption of the neuromuscular junction. Significance: Our finding that the Bayesian MUNE method gives estimates of motor unit numbers that are proportional to the numbers of motor neurons in the spinal cord supports the clinical use of Bayesian MUNE in monitoring motor unit loss in ALS patients. © 2012 International Federation of Clinical Neurophysiology.
Resumo:
To ensure the small-signal stability of a power system, power system stabilizers (PSSs) are extensively applied for damping low frequency power oscillations through modulating the excitation supplied to synchronous machines, and increasing interest has been focused on developing different PSS schemes to tackle the threat of damping oscillations to power system stability. This paper examines four different PSS models and investigates their performances on damping power system dynamics using both small-signal eigenvalue analysis and large-signal dynamic simulations. The four kinds of PSSs examined include the Conventional PSS (CPSS), Single Neuron based PSS (SNPSS), Adaptive PSS (APSS) and Multi-band PSS (MBPSS). A steep descent parameter optimization algorithm is employed to seek the optimal PSS design parameters. To evaluate the effects of these PSSs on improving power system dynamic behaviors, case studies are carried out on an 8-unit 24-bus power system through both small-signal eigenvalue analysis and large-signal time-domain simulations.
Resumo:
Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.