361 resultados para needleless electrospinning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyacrylontrile nanofibre yarns have been successfully produced from an electrospinning setup composing positively and negatively charged spinnerets, a rotating funnel and a yarn winder. Through hot drawing, yarns show compact morphology and improved uniformity and have a significant decrease in both yarn and fibre diameters. The hot drawing has improved the molecular orientation and crystallinity of the fibres. The yarn drawn to 5 times of its original length has been found to have the highest tensile strength and modulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) fibers with unexpected elasticity were prepared by a modified core-shell electrospinning method using a commercially-available liquid PDMS precursor (Sylgard 184) and polyvinylpyrrolidone (PVP) as core and sheath materials, respectively. The liquid PDMS precursor was crosslinked in situ to form a solid core when the newly-electrospun core-sheath nanofibers were deposited onto a hot-plate electrode collector. After dissolving the PVP sheath layer off the fibers, net PDMS fibers showed larger average diameter than core-sheath fibers, with an average diameter around 1.35 μm. The tensile properties of both single fibers and fibrous mats were measured. Single PDMS fibers had a tensile strength and elongation at break of 6.0 MPa and 212%, respectively, which were higher than those of PDMS cast film (4.9 MPa, 93%). The PDMS fiber mat had larger elongation at break than the single PDMS fibers, which can be drawn up to 403% their original length. Cyclic loading tests indicated a Mullin effect on the PDMS fiber mats. Such a superior elastic feature was attributed to the PDMS molecular orientation within fibers and the randomly-orientated fibrous structure. Highly-elastic, ultrafine PDMS fibers may find applications in strain sensors, biomedical engineering, wound healing, filtration, catalysis, and functional textiles. © The Royal Society of Chemistry 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofibers possess high surface area and excellent porosity. Though nanofibers can be produced by a variety of techniques, electrospinning stands distinct because of its simplicity and flexibility in processing different polymer materials, and ability to control fiber diameter, morphology, orientation, and chemical component. Nonetheless, electrospun nanofibers are predominantly produced in the form of randomly oriented fiber webs, which restrict their wide use. Converting nanofibers into twisted continuous bundles, i.e., nanofiber yarns, can improve their strength and facilitate their subsequent processes, but remains challenging to make. Nanofiber yarns also create enormous opportunities to develop well-defined three-dimensional nanofibrous architectures. This review article gives an overview of the state-of-the-art techniques for electrospinning of nanofiber yarns and control of nanofiber alignment. A detailed account on techniques to produce twisted/non-twisted short bundles and continuous yarns are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofibres prepared by electrospinning typically have randomly oriented fibrous structure. They have large surface-to-volume (or weight) ratio and excellent porous characteristic, which have shown enormous potential in diverse applications. However, electrospun nanofibres are often prepared in the form of randomly orientated fibrous web, which are fragile and difficult to be tailored in fibrous structures. Herein, we demonstrate a novel yarn electrospinning method which uses a rotating ring collector to convert newly electrospun nanofibres directly into a continuous yarn. The use of ring collector separates the yarn formation from the electrospinning zone. The deposition of later-spun nanofibres to the inner surface of fibrous cone eliminates hooked or curled nanofibres in the final yarn. The effects of polymer concentration and operating parameters on nanofibre and yarn morphology, diameter and the ring collector on yarn twist feature were examined. The nanofibre yarns had a surface twist angle up to 54.4°, and tensile strength as high as 93.6 MPa (elongation at break 242.6%). Increasing twist levels improves tensile strength and strain values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) (PVDF) nanofiber mats prepared by an electrospinning technique were used as an active layer for making mechanical-to-electric energy conversion devices. The effects of PVDF concentration and electrospinning parameters (e.g. applied voltage, spinning distance), as well as nanofiber mat thickness on the fiber diameter, PVDF β crystal phase content, and mechanical-to-electrical energy conversion properties of the electrospun PVDF nanofiber mats were examined. It was interesting to find that finer uniform PVDF fibers showed higher β crystal phase content and hence, the energy harvesting devices had higher electrical outputs, regardless of changing the electrospinning parameters and PVDF concentration. The voltage output always changed in the same trend to the change of current output whatever the change trend was caused by the operating parameters or polymer concentration. Both voltage and current output changes followed a similar trend to the change of the β crystal phase content in the nanofibers. The nanofiber mat thickness influenced the device electrical output, and the maximum output was found on the 70 μm thick nanofiber mat. These results suggest that uniform PVDF nanofibers with smaller diameters and high β crystal phase content facilitate mechanical-to-electric energy conversion. The understanding obtained from this study may benefit the development of novel piezoelectric nanofibrous materials and devices for various energy uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite materials made of epoxy resin and barium titanate (BT) electrospun nanostructured fibers were prepared. BT fibers were synthesized from a sol based on barium acetate, titanium isopropoxide, and poly(vinyl pyrrolidone). The fibers were heat-treated at different temperatures and characterized by X-ray diffraction, scanning electron microscopy (SEM), and Raman spectroscopy. Mats of BT fibers heat-treated at 800 C were embedded in epoxy resin into suitable molds. The composites were characterized by SEM, and dielectric measurements were performed by means of dielectric spectroscopy. The dielectric permittivity and dielectric modulus of epoxy resin/BT-fiber composites were measured for two types of samples: with the electrodes parallel and perpendicular to the BT fiber layers. Interestingly, composite samples with electrodes perpendicular to the fiber layers and a BT content as low as 2 vol % led to dielectric permittivities three times higher than that of pure epoxy resin. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospinning has become a widely implemented technique for the generation of nonwoven mats that are useful in tissue engineering and filter applications. The overriding factor that has contributed to the popularity of this method is the ease with which fibers with submicron diameters can be produced. Fibers on that size scale are comparable to protein filaments that are observed in the extracellular matrix. The apparatus and procedures for conducting electrospinning experiments are ostensibly simple. While it is rarely reported in the literature on this topic, any experience with this method of fiber spinning reveals substantial ambiguities in how the process can be controlled to generate reproducible results. The simplicity of the procedure belies the complexity of the physical processes that determine the electrospinning process dynamics. In this article, three process domains and the physical domain of charge interaction are identified as important in electrospinning: (a) creation of charge carriers, (b) charge transport, (c) residual charge. The initial event that enables electrospinning is the generation of region of excess charge in the fluid that is to be electrospun. The electrostatic forces that develop on this region of charged fluid in the presence of a high potential result in the ejection of a fluid jet that solidifies into the resulting fiber. The transport of charge from the charge solution to the grounded collection device produces some of the current which is observed. That transport can occur by the fluid jet and through the atmosphere surrounding the electrospinning apparatus. Charges that are created in the fluid that are not dissipated remain in the solidified fiber as residual charges. The physics of each of these domains in the electrospinning process is summarized in terms of the current understanding, and possible sources of ambiguity in the implementation of this technique are indicated. Directions for future research to further articulate the behavior of the electrospinning process are suggested. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3682464]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospinning (ES) can readily produce polymer fibers with cross-sectional dimensions ranging from tens of nanometers to tens of microns. Qualitative estimates of surface area coverage are rather intuitive. However, quantitative analytical and numerical methods for predicting surface coverage during ES have not been covered in sufficient depth to be applied in the design of novel materials, surfaces, and devices from ES fibers. This article presents a modeling approach to ES surface coverage where an analytical model is derived for use in quantitative prediction of surface coverage of ES fibers. The analytical model is used to predict the diameter of circular deposition areas of constant field strength and constant electrostatic force. Experimental results of polyvinyl alcohol fibers are reported and compared to numerical models to supplement the analytical model derived. The analytical model provides scientists and engineers a method for estimating surface area coverage. Both applied voltage and capillary-to-collection-plate separation are treated as independent variables for the analysis. The electric field produced by the ES process was modeled using COMSOL Multiphysics software to determine a correlation between the applied field strength and the size of the deposition area of the ES fibers. MATLAB scripts were utilized to combine the numerical COMSOL results with derived analytical equations. Experimental results reinforce the parametric trends produced via modeling and lend credibility to the use of modeling techniques for the qualitative prediction of surface area coverage from ES. (Copyright: 2014 American Vacuum Society.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ɛ)caprolactone scaffolds have been electrospun directly into an auricular shaped conductive mould. Bovine chondrocytes were harvested from articular cartilage and seeded onto 16 of the produced scaffolds, which received either an ethanol (group A) or a plasma treatment (group B) for sterilisation before seeding. The seeded scaffolds were cultured for 3 weeks in vitro and analysed with regard to total DNA and GAG content as well as the expression of AGG, COL1, COL2, MMP3 and MMP13. Rapid cell proliferation and GAG accumulation was observed until week 2. However, total DNA and GAG content decreased again in week 3. qPCR data shows a slight increase in the expression of anabolic genes and a slight decrease for the catabolic genes, with a significant difference between the groups A and B only for COL2 and MMP13.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study assessed if hospital-wide implementation of a needleless intravenous connection system reduces the number of reported percutaneous injuries, overall and those specifically due to intravenous connection activities.^ Incidence rates were compared before and after hospital-wide implementation of a needleless intravenous system at two hospitals, a full service general hospital and a pediatric hospital. The years 1989-1991 were designated as pre-implementation and 1993 was designated as post-implementation. Data from 1992 were not included in the effectiveness evaluation to allow employees to become familiar with use of the new device. The two hospitals showed rate ratios of 1.37 (95% CI = 1.22-1.54, p $\le$.0001) and 1.63 (95% CI = 1.34-1.97, p $\le$.0001), or a 27.1% and a 38.6% reduction in overall injury rate, respectively. Rate ratios for intravenous connection injuries were 2.67 (95% CI = 1.89-3.78, p $\le$.0001) and 3.35 (95% CI = 1.87-6.02, p $\le$.0001), or a 62.5% and a 69.9% reduction in injury rate, respectively. Rate ratios for all non-intravenous connection injuries were calculated to control for factors other than device implementation that may have been operating to reduce the injury rate. These rate ratios were lower, 1.21 and 1.44, demonstrating the magnitude of injury reduction due to factors other than device implementation. It was concluded that the device was effective in reduction of numbers of reported percutaneous injuries.^ Use-effectiveness of the system was also assessed by a survey of randomly selected device users to determine satisfaction with the device, frequency of use and barriers to use. Four hundred seventy-eight surveys were returned for a response rate of 50.9%. Approximately 94% of respondents at both hospitals expressed satisfaction with the needleless system and recommended continued use. The survey also revealed that even though over 50% of respondents report using the device "always" or "most of the time" for intravenous medication administration, flushing lines, and connecting secondary intravenous lines, needles were still being used for these same activities. Compatibility, accessibility and other technical problems were reported as reasons for using needles for these activities. These problems must be addressed, by both manufacturers and users, before the needleless system will be effective in prevention of all intravenous connection injuries. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica sub-microtubes loaded with platinum nanoparticles have been prepared in flexible non-woven mats using co-axial electrospinning technique. A partially gelated sol made from tetraethyl orthosilicate was used as the silica precursor, and oil was used as the sacrificial template for the hollow channel generation. Platinum has been supported on the wall of the tubes just adding the metallic precursor to the sol–gel, thus obtaining the supported catalyst by one-pot method. The silica tubes have a high aspect ratio with external/internal diameters of 400/200 nm and well-dispersed platinum nanoparticles of around 2 nm. This catalyst showed a high NO conversion with very high selectivity to N2 at mild conditions in the presence of excess oxygen when using C3H6 as reducing agent. This relevant result reveals the potential of this technique to produce nanostructured catalysts onto easy to handle conformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirty-two poly(ε)caprolactone (PCL) scaffolds have been produced by electrospinning directly into an auricle-shaped mould and seeded with articular chondrocytes harvested from bovine ankle joints. After seeding, the auricle shaped constructs were cultured in vitro and analysed at days 1, 7, 14 and 21 for regional differences in total DNA, glycosaminoglycan (GAG) and collagen (COL) content as well as the expression of aggrecan (AGG), collagen type I and type II (COL1/2) and matrix metalloproteinase 3 and 13 (MMP3/13). Stress-relaxation indentation testing was performed to investigate regional mechanical properties of the electrospun constructs. Electrospinning into a conductive mould yielded stable 3D constructs both initially and for the whole in vitro culture period, with an equilibrium modulus in the MPa range. Rapid cell proliferation and COL accumulation was observed until week 3. Quantitative real time PCR analysis showed an initial increase in AGG, no change in COL2, a persistent increase in COL1, and only a slight decrease initially for MMP3. Electrospinning of fibrous scaffolds directly into an auricle-shape represents a promising option for auricular tissue engineering, as it can reduce the steps needed to achieve an implantable structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the production of advanced materials comprising a wide array of polymer-based building blocks. These materials include bio-hybrid polymer-peptide conjugates, based on phenylalanine and poly(ethylene oxide), and polymers with intrinsic microporosity (PIMs). Polymer-peptides conjugates were previously synthesised using click chemistry. Due to the inherent disadvantages of the reported synthesis, a new, simpler, inexpensive protocol was sought. Three synthetic methods based on amidation chemistry were investigated for both oligopeptide and polymerpeptide coupling. The resulting conjugates produced were then assessed by various analytical techniques, and the new synthesis was compared with the established protocol. An investigation was also carried out focussing on polymer-peptide coupling via ester chemistry, involving deprotection of the carboxyl terminus of the peptide. Polymer-peptide conjugates were also assessed for their propensity to self-assemble into thixotropic gels in an array of solvent mixtures. Determination of the rules governing this particular self-assembly (gelation) was required. Initial work suggested that at least four phenylalanine peptide units were necessary for self-assembly, due to favourable hydrogen bond interactions. Quantitative analysis was carried out using three analytical techniques (namely rheology, FTIR, and confocal microscopy) to probe the microstructure of the material and provided further information on the conditions for self-assembly. Several polymers were electrospun in order to produce nanofibres. These included novel materials such as PIMs and the aforementioned bio-hybrid conjugates. An investigation of the parameters governing successful fibre production was carried out for PIMs, polymer-peptide conjugates, and for nanoparticle cages coupled to a polymer scaffold. SEM analysis was carried out on all material produced during these electrospinning experiments.