956 resultados para natural product
Resumo:
Soft engineering solutions are the current standard for addressing coastal erosion in the US. In South Carolina, beach nourishment from offshore sand deposits and navigation channels has mostly replaced construction of seawalls and groins, which were common occurrences in earlier decades. Soft engineering solutions typically provide a more natural product than hard solutions, and also eliminate negative impacts to adjacent areas which are often associated with hard solutions. A soft engineering solution which may be underutilized in certain areas is shoal manipulation. (PDF contains 4 pages)
Resumo:
Since its discovery in 1896, the Buchner reaction has fascinated chemists for more than a century. The highly reactive nature of the carbene intermediates allows for facile dearomatization of stable aromatic rings, and provides access to a diverse array of cyclopropane and seven-membered ring architectures. The power inherent in this transformation has been exploited in the context of a natural product total synthesis and methodology studies.
The total synthesis work details efforts employed in the enantioselective total synthesis of (+)-salvileucalin B. The fully-substituted cyclopropane within the core of the molecule arises from an unprecedented intramolecular Buchner reaction involving a highly functionalized arene and an α-diazo-β-ketonitrile. An unusual retro-Claisen rearrangement of a complex late-stage intermediate was discovered on route to the natural product.
The unique reactivity of α-diazo-β-ketonitriles toward arene cyclopropanation was then investigated in a broader methodological study. This specific di-substituted diazo moiety possesses hitherto unreported selectivity in intramolecular Buchner reactions. This technology was enables the preparation of highly functionalized norcaradienes and cyclopropanes, which themselves undergo various ring opening transformations to afford complex polycyclic structures.
Finally, an enantioselective variant of the intramolecular Buchner reaction is described. Various chiral copper and dirhodium catalysts afforded moderate stereoinduction in the cyclization event.
Resumo:
Publications about olefin metathesis will generally discuss how the discovery and development of well-defined catalysts to carry out this unique transformation have revolutionized many fields, from natural product and materials chemistry, to green chemistry and biology. However, until recently, an entire manifestation of this methodology had been inaccessible. Except for a few select examples, metathesis catalysts favor the thermodynamic trans- or E-olefin products in cross metathesis (CM), macrocyclic ring closing metathesis (mRCM), ring opening metathesis polymerization (ROMP), and many other types of reactions. Judicious choice of substrates had allowed for the direct synthesis of cis- or Z-olefins or species that could be converted upon further reaction, however the catalyst controlled synthesis of Z-olefins was not possible until very recently.
Research into the structure and stability of metallacyclobutane intermediates has led to the proposal of models to impart Z-selectivity in metathesis reactions. Having the ability to influence the orientation of metallacyclobutane substituents to cause productive formation of Z- double bonds using steric and electronic effects was highly desired. The first successful realization of this concept was by Schrock and Hoveyda et al. who synthesized monoaryloxide pyrolidine (MAP) complexes of tungsten and molybdenum that promoted Z-selective CM. The Z-selectivity of these catalysts was attributed to the difference in the size of the two axial ligands. This size difference influences the orientation of the substituents on the forming/incipient metallacyclobutane intermediate to a cis-geometry and leads to productive formation of Z-olefins. These catalysts have shown great utility in the synthesis of complicated natural product precursors and stereoregular polymers. More recently, ruthenium catalysts capable of promoting Z-selective metathesis have been reported by our group and others. This thesis will discuss the development of ruthenium-based NHC chelated Z-selective catalysts, studies probing their unique metathesis mechanism, and synthetic applications that have been investigated thus far.
Chapter 1 will focus on studies into the stability of NHC chelated complexes and the synthesis of new and improved stable chelating architectures. Chapter 2 will discuss applications of the highly active and Z-selective developed in Chapter 1, including the formation of lepidopteran female sex pheromones using olefin cross metathesis and highly Z- and highly E-macrocycles using macrocyclic ring closing metathesis and Z-selective ethenolysis. Chapter 3 will explore studies into the unique mechanism of olefin metathesis reactions catalyzed by these NHC chelated, highly Z-selective catalysts, explaining observed trends by investigating the stability of relevant, substituted metallacyclobutane intermediates.
Resumo:
The ritterazine and cephalostatin natural products have biological activities and structures that are interesting to synthetic organic chemists. These products have been found to exhibit significant cytotoxicity against P388 murine leukemia cells, and therefore have the potential to be used as anticancer drugs. The ritterazines and cephalostatins are steroidal dimers joined by a central pyrazine ring. Given that the steroid halves are unsymmetrical and highly oxygenated, there are several challenges in synthesizing these compounds in an organic laboratory.
Ritterazine B is the most potent derivative in the ritterazine family. Its biological activity is comparable to drugs that are being used to treat cancer today. For this reason, and the fact that there are no reported syntheses of ritterazine B to date, our lab set out to synthesize this natural product.
Herein, efforts toward the synthesis of the western fragment of ritterazine B are described. Two different routes are explored to access a common intermediate. An alkyne conjugate addition reaction was initially investigated due to the success of this key reaction in the synthesis of the eastern fragment. However, it has been found that a propargylation reaction has greater reactivity and yields, and has the potential to reduce the step count of the synthesis of the western fragment of ritterazine B.
Resumo:
Nicotinic acetylcholine receptors are pentameric ligand-gated ion channels mediating fast synaptic transmission throughout the peripheral and central nervous systems. They have been implicated in various processes related to cognitive functions, learning and memory, arousal, reward, motor control and analgesia. Therefore, these receptors present alluring potential therapeutic targets for the treatment of pain, epilepsy, Alzheimer’s disease, Parkinson’s disease, Tourette’s syndrome, schizophrenia, anxiety, depression and nicotine addiction. The work detailed in this thesis focuses on binding studies of neuronal nicotinic receptors and aims to further our knowledge of subtype specific functional and structural information.
Chapter 1 is an introductory chapter describing the structure and function of nicotinic acetylcholine receptors as well as the methodologies used for the dissertation work described herein. There are several different subtypes of nicotinic acetylcholine receptors known to date and the subtle variations in their structure and function present a challenging area of study. The work presented in this thesis deals specifically with the α4β2 subtype of nicotinic acetylcholine receptor. This subtype assembles into 2 closely related stoichiometries, termed throughout this thesis as A3B2 and A2B3 after their respective subunit composition. Chapter 2 describes binding studies of select nicotinic agonists on A3B2 and A2B3 receptors determined by whole-cell recording. Three key binding interactions, a cation-π and two hydrogen bonds, were probed for four nicotinic agonists, acetylcholine, nicotine, smoking cessation drug varenicline (Chantix®) and the related natural product cytisine.
Results from the binding studies presented in Chapter 2 show that the major difference in binding of these four agonists to A3B2 and A2B3 receptors lies in one of the two hydrogen bond interactions where the agonist acts as the hydrogen bond acceptor and the backbone NH of a conserved leucine residue in the receptor acts as the hydrogen bond donor. Chapter 3 focuses on studying the effect of modulating the hydrogen bond acceptor ability of nicotine and epibatidine on A3B2 receptor function determined by whole-cell recording. Finally, Chapter 4 describes single-channel recording studies of varenicline binding to A2B3 and A3B2 receptors.
Resumo:
Decarboxylation and decarbonylation are important reactions in synthetic organic chemistry, transforming readily available carboxylic acids and their derivatives into various products through loss of carbon dioxide or carbon monoxide. In the past few decades, palladium-catalyzed decarboxylative and decarbonylative reactions experienced tremendous growth due to the excellent catalytic activity of palladium. Development of new reactions in this category for fine and commodity chemical synthesis continues to draw attention from the chemistry community.
The Stoltz laboratory has established a palladium-catalyzed enantioselective decarboxylative allylic alkylation of β-keto esters for the synthesis of α-quaternary ketones since 2005. Recently, we extended this chemistry to lactams due to the ubiquity and importance of nitrogen-containing heterocycles. A wide variety of α-quaternary and tetrasubstituted α-tertiary lactams were obtained in excellent yields and exceptional enantioselectivities using our palladium-catalyzed decarboxylative allylic alkylation chemistry. Enantioenriched α-quaternary carbonyl compounds are versatile building blocks that can be further elaborated to intercept synthetic intermediates en route to many classical natural products. Thus our chemistry enables catalytic asymmetric formal synthesis of these complex molecules.
In addition to fine chemicals, we became interested in commodity chemical synthesis using renewable feedstocks. In collaboration with the Grubbs group, we developed a palladium-catalyzed decarbonylative dehydration reaction that converts abundant and inexpensive fatty acids into value-added linear alpha olefins. The chemistry proceeds under relatively mild conditions, requires very low catalyst loading, tolerates a variety of functional groups, and is easily performed on a large scale. An additional advantage of this chemistry is that it provides access to expensive odd-numbered alpha olefins.
Finally, combining features of both projects, we applied a small-scale decarbonylative dehydration reaction to the synthesis of α-vinyl carbonyl compounds. Direct α-vinylation is challenging, and asymmetric vinylations are rare. Taking advantage of our decarbonylative dehydration chemistry, we were able to transform enantioenriched δ-oxocarboxylic acids into quaternary α-vinyl carbonyl compounds in good yields with complete retention of stereochemistry. Our explorations culminated in the catalytic enantioselective total synthesis of (–)-aspewentin B, a terpenoid natural product featuring a quaternary α-vinyl ketone. Both decarboxylative and decarbonylative chemistries found application in the late stage of the total synthesis.
Resumo:
Tryptophan and unnatural tryptophan derivatives are important building blocks for the total synthesis of natural products, as well as the development of new drugs, biological probes, and chiral small molecule catalysts. This thesis describes various catalytic methods for the preparation of tryptophan derivatives as well as their functionalization and use in natural product total synthesis.
Herein, the tandem Friedel–Crafts conjugate addition/asymmetric protonation reaction between 2-substituted indoles and methyl 2-acetamidoacrylate to provide enantioenriched trytophans is reported. This method inspired further work in the area of transition metal catalyzed arylation reactions. We report the development of the coppercatalyzed arylation of tryptamine and tryptophan derivatives. The utility of these transformations is highlighted in the five-step syntheses of the natural products (+)-naseseazine A and B. Further work on the development of a mild and general Larock indolization protocol to access unnatural tryptophans is also discussed.
Resumo:
A doença pulmonar obstrutiva crônica (DPOC) causa a redução da capacidade respiratória e seu desenvolvimento é associado à fumaça de cigarro. O cigarro possui mais de 4800 substâncias tóxicas e causa a morte de seis milhões de pessoas por ano no mundo. Estudos buscam meios de reverter os males causados pela fumaça de cigarro. A própolis (P) é um produto produzido por abelhas que possui várias propriedades. O objetivo deste trabalho foi avaliar os efeitos antioxidantes da P em macrófagos murinos e na inflamação pulmonar aguda induzida pela fumaça de cigarro (CS) em camundongos. A análise dos compostos fitoquímicos do extrato alcóolico da P (EAP) foi feita por cromatografia gasosa acoplada à espectrometria de massa (GC-MS). Células da linhagem RAW 264.7 foram tratadas em diversas concentrações de P durante 24 horas. Após tratamento, as seguintes análises foram realizadas: polifenóis totais; viabilidade celular (MTT); potencial redutor (DPPH); espécies reativas de oxigênio totais (ROS) e de malondialdeído (MDA). Trinta camundongos C57BL/6 foram divididos em 3 grupos (n=10/grupo): Controle+P, CS e CS+P. Ambos os grupos CS foram expostos a 6 cigarros/dia durante 5 dias. O grupo CS foi tratado com veículo. O pulmão e o lavado broncoalveolar (BAL) foram coletados para análise histológica e contagem diferencial de células. As análises para mieloperoxidase (MPO), superóxido dismutase (SOD), catalase (CAT), glutationa peroxidase (GPx), glutationa reduzida (GSH) e oxidada (GSSG), MDA, nitrito e western blotting para TNF-alfa foram realizadas. A análise fitoquímica do EAP mostrou a presença dos ácidos hidrocinâmicos e coumárico, a artepilina C e a drupanina. Foi observado o aumento concentração-dependente dos níveis de polifenóis totais (p<0,001), do MTT (p<0,001) e do DPPH (p<0,001), e o inverso com o MDA (p<0,001). Os níveis de ROS diminuem nas concentrações de 15,6 e 31,2 mg/mL (p<0,05, ambos). A histologia pulmonar do grupo Controle+P foi similar ao do CS+P e foi observado um influxo de macrófagos e neutrófilos no grupo CS (p<0,01 e p<0,001, respectivamente). Os níveis de MPO foram aumentados no grupo CS (526,534,72 mU/mg ptn, p<0,01), mas houve uma redução no grupo CS+P (385,127,64 mU/mg ptn, p<0,05) comparável ao Controle+P (13412,99 mU/mg ptn, p<0,001), o mesmo aconteceu com as enzimas antioxidantes: SOD (Controle+P: 523,529,6 U/mg ptn; CS: 523,529,6 U/mg ptn, p<0,001; CS+P: 246,815,69 U/mg ptn, p<0,001); CAT (Controle+P: 37,383,39 U/mg ptn; CS: 92,686,24 U/mg ptn, p<0,001; CS+P: 59,844,55 U/mg ptn, p<0,05); GPx (Controle+P: 2,230,17 (M/min/mg ptn) x 10-1; CS: 4,510,31 (M/min/mg ptn) x 10-1, p<0,001; CS+P: 2,640,19 (M/min/mg ptn) x 10-1, p<0,05). O inverso ocorreu com a relação GSH/GSSG (Controle+P: 1,0880,17; CS: 0,7360,07, p<0,05; CS+P: 1,2580,10, p<0,05). Os níveis de MDA (Controle+P: 0,2660,05 nMol/mg ptn; CS: 0,940,076 nMol/mg ptn, p<0,001; CS+P: 0,4980,06 nMol/mg ptn, p<0,01) e de nitrito (Controle+P: 50,014,19 Mol/mg ptn; CS: 108,77,73 Mol/mg ptn, p<0,001; CS+P: 58,843,42 nMol/mg ptn, p<0,01) estavam aumentados no CS que em outros grupos. A expressão de TNF-α foi observada no grupo CS. O tratamento da P apresentou ação anti-inflamatória e antioxidante em macrófagos e em camundongos expostos à fumaça de cigarro, possivelmente pela ação dos polifenóis presentes nela
Resumo:
Coriandrum sativum, conhecido popularmente como coentro, é um vegetal usado na alimentação humana. Também é utilizado como planta medicinal para tratamento de diabetes, complicações gastrintestinais, e como um antiedêmico, antisséptico e emenagogo. Em investigações acerca dos efeitos do extrato de plantas, é importante a determinação de alguns parâmetros físico-químicos. Diversos modelos experimentais têm sido usados, inclusive com o emprego de radionuclídeos. Em procedimentos da Medicina Nuclear que auxiliam o diagnóstico de doenças, o tecnécio-99m (99mTc) é o radionuclídeo mais utilizado. Hemácias marcadas com 99mTc estão entre as várias estruturas celulares que podem ser marcadas com este radionuclídeo e usadas como radiofármaco. Para a marcação com 99mTc é necessária a presença de um agente redutor, e o mais utilizado é o cloreto estanoso (SnCl2). As terapias com drogas e condições de dieta além de doenças podem alterar a marcação de constituintes sanguíneos, bem como a biodistribuição de diferentes radiofármacos. A exposição às vibrações geradas por plataforma oscilatória produz exercícios de corpo inteiro. O objetivo deste estudo foi caracterizar a preparação de um extrato do Coriandrum sativum, através de parâmetros físico-químicos, verificar os efeitos desse produto natural na radiomarcação de constituintes sanguíneos e em associação à vibração gerada pela plataforma na biodistribuição de Na99mTcO4 e na concentração de alguns biomarcadores. O extrato de coentro teve a o pico de absorbância em 480 nm. O extrato de coentro foi inversamente correlacionado com a concentração na condutividade elétrica. Foi encontrado o maior valor de pH na menor concentração do extrato (0,5 mg/mL). Não houve uma alteração significativa na marcação de constituintes sanguíneos com 99mTc. E a associação do extrato de coentro e vibração gerada por plataforma com frequência de 12 Hz teve efeito no baço, como observado na fixação do radiofármaco nesse órgão e ação em alguns órgãos alternando a concentração de alguns biomarcadores. Em conclusão, parâmetros físico-químicos podem ser úteis para caracterizar o extrato estudado. Provavelmente, as propriedades redox associadas com substâncias desse extrato podem ser os responsáveis pela ausência do efeito na radiomarcação de constituintes sanguíneos. A determinação da captação do Na99mTcO4 em diferentes órgãos permite verificar que o extrato de coentro sozinho não foi capaz de interferir na biodistribuição do radiofármaco. Contudo o tratamento de animais com vibração gerada pela plataforma alterou significativamente a fixação do pertecnetato de sódio no baço e a concentração do colesterol, triglicerídeo, CK e bilirrubina.
Resumo:
Xanthohumol, prenylchacone flavonoid, is a natural product with multi-biofunctions purified from Hops Humulus lupulus. Its anti-HIV-1 activity was tested in the present study. Results showed that xanthohumol inhibited HIV-1 induced cytopathic effects, the production of viral p24 antigen and reverse transcriptase in C8166 lymphocytes at non-cytotoxic concentration. The EC50 values were 0.82, 1.28 and 0.50 mug/ml, respectively. The therapeutic index (TI) was about 10.8. Xanthohumol also inhibited HIV-1 replication in PBMC with EC50 value of 20.74 mug/ml. The activity of recombinant HIV-1 reverse transcriptase and the HIV-1 entry were not inhibited by xanthohumol. The results from this study suggested that xanthohumol is effective against HIV-1 and might serve as an interesting lead compound. It may represent a novel chemotherapeutic agent for HIV-1 infection. However, the mechanism of its anti-HIV-1 effect needs to be further clarified. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Ginkgo biloba extract (GBE), a valuable natural product for cerebral and cardiovascular diseases, is mainly composed of two classes of constituents: terpene lactones (e.g., ginkgolide A and B, bilobalide) and flavone glycosides (e.g., quercetin and kaempferol). Its electrophysiological action in heart is yet unclear. In the present study, using whole-cell patch clamp technique, we investigated electrophysiological effects of GBE on cation channel currents in ventricular myocytes isolated from rat hearts. We found that GBE 0.01-0.1% inhibited significantly the sodium current (I-Na), L-type calcium current (I-Ca) and transient outward potassium current (IKto) in a concentration-dependent manner. Surprisingly, its main ingredients, ginkgolide A (GB A), ginkgolide B (GB B) and bilobalide (GB BA) at 0.1 mM did not exhibit any significant effect on these cation channel currents. These results suggested that GBE is a potent non-selective cation channel modulator in cardiaomyocytes. Other constituents (rather than GB A, GB B and GB BA) might be responsible for the observed inhibitory effects of GBE on cation channels. (C) 2004 Elsevier Inc. All rights reserved.