999 resultados para native copper
Resumo:
Concern about the risk of harmful human-induced climate change has resulted in international efforts to reduce greenhouse gas emissions to the atmosphere. We review the international and national context for consideration of greenhouse abatement in native vegetation management and discuss potential options in Queensland. Queensland has large areas of productive or potentially productive land with native woody vegetation cover with approximately 76 million ha with woody cover remaining in 1991. High rates of tree clearing, predominantly to increase pasture productivity, continued throughout the 1990s with an average 345,000 ha/a estimated to have been cleared, including non-remnant (woody regrowth) as well as remnant vegetation. Estimates of greenhouse gas emissions associated with land clearing currently have a high uncertainty but clearing was reported to contribute a significant proportion of Australia's total greenhouse gas emissions from 1990 (21%) to 1999 (13%). In Queensland, greenhouse emissions from land clearing were estimated to have been 54.5 Mt CO(2)-e in 1999. Management of native vegetation for timber harvesting and the proliferation of woody vegetation (vegetation thickening) in the grazed woodlands also represent large carbon fluxes. Forestry (plantations and native forests) in Queensland was reported to be a 4.4 Mt CO(2)-e sink in 1999 but there are a lack of comprehensive data on timber harvesting in private hardwood forests. Vegetation thickening is reported for large areas of the c. 60 million ha grazed woodlands in Queensland. The magnitude of the carbon sink in 27 million ha grazed eucalypt woodlands has been estimated to be 66 Mt CO(2)-e/a but this sink is not currently included in Australia's inventory of anthropogenic greenhouse emissions. Improved understanding of the function and dynamics of natural and managed ecosystems is required to support management of native vegetation to preserve and enhance carbon stocks for greenhouse benefits while meeting objectives of sustainable and productive management and biodiversity protection.
Resumo:
This study investigates how markets for different levels of copper purity are interrelated by testing the long-run price linkage and causalities among the copper futures, primary, copper scrap, and brass scrap markets. It is expected that copper markets that deal with high purity levels, such as the futures, primary, and copper scrap markets, have a long-run relationship. However, brass scrap markets where copper with a lower purity is traded may not have a price linkage with other copper markets. The results reveal that a long-run relationship holds between the futures, primary, and copper scrap markets but the brass scrap market does not have a long-run relationship with the other markets. From the short-run and long-run causality tests, we determine that the futures market plays an important role in transmitting price information to other copper markets while such information flow is not found for the brass scrap market.
Resumo:
The molecular structure of the copper–lead silicate mineral luddenite has been analysed using vibrational spectroscopy. The mineral is only one of many silicate minerals containing copper. The intense Raman band at 978 cm−1 is assigned to the ν1 (A1g) symmetric stretching vibration of Si5O14 units. Raman bands at 1122, 1148 and 1160 cm−1 are attributed to the ν3 SiO4 antisymmetric stretching vibrations. The bands in the 678–799 cm−1 are assigned to OSiO bending modes of the (SiO3)n chains. Raman bands at 3317 and 3329 cm−1 are attributed to water stretching bands. Bands at 3595 and 3629 cm−1 are associated with the stretching vibrations of hydroxyl units suggesting that hydroxyl units exist in the structure of luddenite.
Resumo:
Various forms of hydrogenated graphene have been produced to date by several groups, while the synthesis of pure graphane has not been achieved yet. The study of the interface between graphane, in all its possible hydrogenation configurations, and catalyst metal surfaces can be pivotal to assess the feasibility of direct CVD growth methods for this material. We investigated the adhesion of graphane to a Cu(111) surface by adopting the vdW-DF2-C09 exchange-correlation functional, which is able to describe dispersion forces. The results are further compared with the PBE and the LDA exchange-correlation functionals. We calculated the most stable geometrical configurations of the slab/graphane interface and evaluated how graphane's geometrical parameters are modified. We show that dispersion forces play an important role in the slab/graphane adhesion. Band structure calculations demonstrated that in the presence of the interaction with copper, the band gap of graphane is not only preserved, but also enlarged, and this increase can be attributed to the electronic charge accumulated at the interface. We calculated a substantial energy barrier at the interface, suggesting that CVD graphane films might act as reliable and stable insulating thin coatings, or also be used to form compound layers in conjunction with metals and semiconductors.
Resumo:
The growth of graphene by chemical vapor deposition on metal foils is a promising technique to deliver large-area films with high electron mobility. Nowadays, the chemical vapor deposition of hydrocarbons on copper is the most investigated synthesis method, although many other carbon precursors and metal substrates are used too. Among these, ethanol is a safe and inexpensive precursor that seems to offer favorable synthesis kinetics. We explored the growth of graphene on copper from ethanol, focusing on processes of short duration (up to one min). We investigated the produced films by electron microscopy, Raman and X-ray photoemission spectroscopy. A graphene film with high crystalline quality was found to cover the entire copper catalyst substrate in just 20 s, making ethanol appear as a more efficient carbon feedstock than methane and other commonly used precursors.
Resumo:
Economic competition between introduced and native aquaculture species is of interest for industry stakeholders since increased production can affect price formation if both aquaculture species are part of the same market or even substitutes. In this study, we focus on the Australian edible oyster industry, which is dominated by two major species—the native Sydney rock oyster (grown mainly in Queensland and New South Wales) and the non-native Pacific oyster (grown mainly in South Australia and Tasmania). We examine the integration of the Australian oyster market to determine if there exists a single or several markets. Short- and long-run own, cross-price and income flexibilities of demand are estimated for both species using an inverse demand system of equations. The results suggest that the markets for the two species are integrated. We found evidence that the development of the Pacific oyster industry has had an adverse impact on Sydney rock oyster prices. However, our results show that both species are not perfect substitutes. Demand for Sydney rock oysters is relatively inelastic in the long run, yet no long-run relationships can be identified for Pacific oysters, reflecting the developing nature of this sector.
Resumo:
Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the dataset for this premise rarely include linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance. Methods: Three ecological pairs of invasive vs non-invasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g. water use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored. Key results: Mean leaf anatomical trait differed significantly between the two groups, except for stomatal size. Plasticity of traits, and to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration. Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.
Resumo:
The Sydney rock oyster (Saccostrea glomerata) (SRO) is an oyster species that only occurs in estuaries along Australia's east coast. The SRO industry evolved from commercial gathering of oyster in the 1790s to a high production volume aquaculture industry in the 1970s. However, since the late 1970s the SRO industry has experienced a significant and continuous decline in production quantities and the industry's future commercial viably appears to be uncertain. The aim of this study was to review the history and the status of the SRO industry and to discuss the potential future prospects of this industry. This study summarised findings of the existing literature about the industry and defined development stages of the industry. Particular focus was put on the more recent development within the industry (1980s-present) which has not been covered adequately in the existing literature. The finding from this study revealed that major issues of the industry are linked to the management of prevailing diseases, the handling of water quality impairments from increasing coastal development, increasing competition from Australia's Pacific oyster (Crassostrea gigas) industry and the current socio-economic profile of the industry. The study also found that policy makers are currently confronted by the dilemma of saving a "dying art". Findings from this industry review may be vital for current and future fisheries managers and stakeholders as a basis for reviewing industry management and development strategies. This review may also be of interest for other aquaculture industries and fisheries who are dealing with similar challenges as the SRO industry.
Resumo:
The monoanionic ligand 1,1,3,3 tetracyano-2 ethoxypropenide (tcnoet) is reported with its Cu(II)–bpy complex of formula [Cu2(µ-tcnoet)2(tcnoet)2(bpy)2]. The structure has been determined using X-ray diffraction and features an alternating chain with bridging tcnoet ligands. One ligand acts as a bidentate, dinucleating ligand with one short Cu–N and one medium Cu–N bond, whereas the other tcnoet is largely monodentate, albeit with a very weak interdimer Cu–N bond. Despite the arrangement in dinuclear units, further arranged into linear chains through the non-bridging tcnoet ligand, the compound shows no significant magnetic exchange, as deduced from magnetic susceptibility down to 4 K. Ligand-field, IR and EPR spectra in the solid state and in frozen solution are reported and are consistent with the overall structure.
Resumo:
This work explores the potential of Australian native plants as a source of second-generation biodiesel for internal combustion engines application. Biodiesels were evaluated from a number of non-edible oil seeds which are grow naturally in Queensland, Australia. The quality of the produced biodiesels has been investigated by several experimental and numerical methods. The research methodology and numerical model developed in this study can be used for a broad range of biodiesel feedstocks and for the future development of renewable native biodiesel in Australia.
Resumo:
The laz gene of Neisseria meningitidis is predicted to encode a lipid-modified azurin (Laz). Laz is very similar to azurin, a periplasmic protein, which belongs to the copper-containing proteins in the cupredoxin superfamily. In other bacteria, azurin is an electron donor to nitrite reductase, an important enzyme in the denitrifying process. It is not known whether Laz could function as an electron transfer protein in this important pathogen. Laz protein was heterologously expressed in Escherichia coli and purified. Electrospray mass spectrometry indicated that the Laz protein contains one copper ion. Laz was shown to be redox-active in the presence of its redox center copper ion. When oxidized, Laz exhibits an intense blue colour and absorbs visible light around 626 nm. The absorption is lost when exposed to diethyldithiocarbamate, a copper chelating agent. Polyclonal antibodies were raised against purified Laz for detecting expression of Laz under different growth conditions and to determine the orientation of Laz on the outer membrane. The expression of Laz under microaerobic and microaerobic denitrifying conditions was slightly higher than that under aerobic conditions. However, the expression of Laz was similar between the wild type strain and an fnr mutant, suggesting that Fumarate/Nitrate reduction regulator (FNR) does not regulate the expression of Laz despite the presence of a partial FNR box upstream of the laz gene. We propose that some Laz protein is exposed on the outer membrane surface of N. meningitidis as the αLaz antibodies can increase killing by complement in a capsule deficient N. meningitidis strain, in a dose-dependent fashion.
Resumo:
Introduction Chronic wounds are an area of major concern. The on-going and in-direct costs are substantial, reaching far beyond the costs of the hospitalization and associated care. As a result, pharmacological therapies have been developed to address treatment insufficiencies, however, the availability of drugs capable of promoting the wound repair process still remain limited. The wound healing properties of various herbal plants is well recognised amongst indigenous Australians. Hence, based on traditional accounts, we evaluated the wound healing potential of two Australian native plants. Methods Bioactive compounds were methanol extracted from dried plant leaves that were commercially sourced. Primary keratinocyte (Kc) and fibroblast (Fib) cells (denoted as Kc269, Kc274, Kc275, Kc276 and Fib274) obtained from surgical discarded tissue were cultured in 48-well plates and incubated (37⁰C, 5% CO2) overnight. The growth media was discarded and replaced with fresh growth media plus various concentrations (15.12 µg/mL, 31.25 µg/mL, 62.5 µg/mL, 125 µg/mL, 250 µg/mL and 500 µg/mL) of the plant extracts. Cellular responses were measured using the alamarBlue® assay and the CyQUANT® assay. Plant extracts in the aqueous phase were prepared by boiling whole leaves in water and taking aqueous phase samples at various (1, 2 , 5 minutes boiling) time points. Plant leaves were either added before the water was boiled (cold boiled) or after the water was boiled (hot boiled). The final concentrations of the aqueous plant extracts were 3.3 ng/mL (± 0.3 ng/mL) per sample. The antimicrobial properties of the plant extracts were tested using the well diffusion assay method against Staphylococcus aureus, Klebsiella pnuemoniae and methicillin resistant S. aureus and Bacillus cereus. Results Assay results from the almarBlue® and CYQUANT® assays indicated that extracts from both native plants at various time points (0, 24 and 48 hours) and concentrations (31.25 mg/mL, 62.5 mg/mL, and 125 mg/mL) were significantly higher (n=3, p=0.03 for Kc269, p=0.04 for Kc274, p=0.02 for Fib274, p=0.04 for Kc275 and p=0.001 for Kc276) compared with the untreated controls. Neither plant extract demonstrated cytotoxic effects. Significant antimicrobial activity against methicillin resistant Staphylococcus aureus (p=0.0009 for hot boiled plant A, n=2, p=0.034 for cold boiled plant A, n=2) K. pnuemoniae (p=0.0009 for hot boiled plant A, n=2, p=0.002 for cold boiled plant A, n=2) and B. cereus (p=0.0009 for hot boiled plant A, n=2, p=0.003 for cold boiled plant A, n=2) was observed at concentrations of 3.2 ng/mL for plant A and 3.4 ng/mL for plant B. Conclusion Both native plants contain bioactive compounds that increase cellular metabolic rates and total nucleic acid content. Neither plant was shown to be cytotoxic. Furthermore, both exhibited significant antimicrobial activity.
Resumo:
Chronic wounds, often associated with venous and arterial ulcers, diabetes and pressure sores, is an area of great concern. In Australia, the cost of treating chronic wounds is conservatively estimated at $285 million/annum for the treatment of pressure ulcers and $654 million annually for the treatment and management of leg ulcers. Current figures indicate that more than seven million people suffer from chronic wounds worldwide with Australians accounting for approximately 600,000 of this number. Bacterial infection of the wound site is a major issue as contamination of a chronic wound with methicillin-resistant Staphylococcus aureus (MRSA) significantly delays wound healing. Further, once systemic, current antibiotic therapies capable of treating the infection are limited. Aboriginal bush medicine has been used for thousands of years for the treatment of wounds and sores. Hence, we selected a native Australian plant to evaluate its bactericidal activity against MRSA.