829 resultados para muscle action potential
Resumo:
Voltage-gated potassium (Kv) channels are essential components of neuronal excitability. The Kv3.4 channel protein is widely distributed throughout the central nervous system (CNS), where it can form heteromeric or homomeric Kv3 channels. Electrophysiological studies reported here highlight a functional role for this channel protein within neurons of the dorsal vagal nucleus (DVN). Current clamp experiments revealed that blood depressing substance (BDS) and intracellular dialysis of an anti-Kv3.4 antibody prolonged the action potential duration. In addition, a BDS sensitive, voltage-dependent, slowly inactivating outward current was observed in voltage clamp recordings from DVN neurons. Electrical stimulation of the solitary tract evoked EPSPs and IPSPs in DVN neurons and BDS increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. This presynaptic modulation was action potential dependent as revealed by ongoing synaptic activity. Given the role of the Kv3 proteins in shaping neuronal excitability, these data highlight a role for homomeric Kv3.4 channels in spike timing and neurotransmitter release in low frequency firing neurons of the DVN.
Resumo:
Firing of action potentials in excitable cells accelerates ATP turnover. The voltage-gated potassium channel Kv2.1 regulates action potential frequency in central neurons, whereas the ubiquitous cellular energy sensor AMP-activated protein kinase (AMPK) is activated by ATP depletion and protects cells by switching off energy-consuming processes. We show that treatment of HEK293 cells expressing Kv2.1 with the AMPK activator A-769662 caused hyperpolarizing shifts in the current-voltage relationship for channel activation and inactivation. We identified two sites (S440 and S537) directly phosphorylated on Kv2.1 by AMPK and, using phosphospecific antibodies and quantitative mass spectrometry, show that phosphorylation of both sites increased in A-769662-treated cells. Effects of A-769662 were abolished in cells expressing Kv2.1 with S440A but not with S537A substitutions, suggesting that phosphorylation of S440 was responsible for these effects. Identical shifts in voltage gating were observed after introducing into cells, via the patch pipette, recombinant AMPK rendered active but phosphatase-resistant by thiophosphorylation. Ionomycin caused changes in Kv2.1 gating very similar to those caused by A-769662 but acted via a different mechanism involving Kv2.1 dephosphorylation. In cultured rat hippocampal neurons, A-769662 caused hyperpolarizing shifts in voltage gating similar to those in HEK293 cells, effects that were abolished by intracellular dialysis with Kv2.1 antibodies. When active thiophosphorylated AMPK was introduced into cultured neurons via the patch pipette, a progressive, time-dependent decrease in the frequency of evoked action potentials was observed. Our results suggest that activation of AMPK in neurons during conditions of metabolic stress exerts a protective role by reducing neuronal excitability and thus conserving energy.
Resumo:
Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50 Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50 Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems.
Resumo:
The perforated whole-cell configuration of the patch-clamp technique was applied to functionally identified beta-cells in intact mouse pancreatic islets to study the extent of cell coupling between adjacent beta-cells. Using a combination of current- and voltage-clamp recordings, the total gap junctional conductance between beta-cells in an islet was estimated to be 1.22 nS. The analysis of the current waveforms in a voltage-clamped cell ( due to the. ring of an action potential in a neighbouring cell) suggested that the gap junctional conductance between a pair of beta-cells was 0.17 nS. Subthreshold voltage-clamp depolarization (to -55 mV) gave rise to a slow capacitive current indicative of coupling between beta-cells, but not in non-beta-cells, with a time constant of 13.5 ms and a total charge movement of 0.2 pC. Our data suggest that a superficial beta-cell in an islet is in electrical contact with six to seven other beta-cells. No evidence for dye coupling was obtained when cells were dialysed with Lucifer yellow even when electrical coupling was apparent. The correction of the measured resting conductance for the contribution of the gap junctional conductance indicated that the whole-cell K(ATP) channel conductance (G(K,ATP)) falls from approximately 2.5 nS in the absence of glucose to 0.1 nS at 15 mM glucose with an estimated IC(50) of approximately 4 mM. Theoretical considerations indicate that the coupling between beta-cells within the islet is sufficient to allow propagation of [Ca(2+)](i) waves to spread with a speed of approximately 80 mu m s(-1), similar to that observed experimentally in confocal [Ca(2+)](i) imaging.
Resumo:
Eugenol is a phenylpropene obtained from the essential oils of plants such as clove and basil which has ample use in dentistry. Eugenol possesses analgesic effects that may be related to the inhibition of voltage-dependent Na(+) channels and/or to the activation of TRPV1 receptors or both. In the present study, electrophysiological parameters were taken from the compound action potentials of the isolated rat sciatic nerve and from neurons of the superior cervical ganglion (SCG) impaled with sharp microelectrodes under current-clamp conditions. In the isolated rat sciatic nerve, eugenol inhibited the compound action potential in a concentration-dependent manner. Action potentials recorded from SCG neurons were inhibited by eugenol with an IC(50) of 0.31 mM. At high concentrations (2 mM), during brief applications. eugenol caused significant action potential blockade while it did not interfere with the resting membrane potential or the membrane input resistance. Surprisingly, however, at low eugenol concentrations (0.6 mM), during long time applications, a reversible reduction (by about 50%) in the input membrane resistance was observed, suggesting the possible involvement of a secondary delayed effect of eugenol to reduce neuronal excitability. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Leprosy neuropathy, despite being primarily demyelinating, frequently leads to axonal loss. Neurophysiological examination of the nerves during Type 1 (T1R) and Type 2 reactions (T2R) may give some insight into the pathophysiological mechanisms.Methods: Neurophysiological examinations were performed in 28 ulnar nerves during a clinical trial of steroid treatment effectiveness, 19 patients with T1R and nine with T2R. The nerves were monitored during a period of 6 months; there were eight assessments per nerve, for a total of 224 assessments. Nine neurophysiological parameters were assessed at three sites of the ulnar nerve. The compound motor action potential amplitudes elicited at wrist, elbow and above, as well as the conduction velocity and temporal dispersion across the elbow, were chosen to focus on the changes occurring in the parameters at the elbow tunnel.Results and Conclusion: Neurophysiological changes indicating axonal and demyelinating processes during both T1R and T2R were detected across the elbow. Changes in demyelination, i.e. a Conduction Block, as a primary event present during T2R, occurring as an acute phenomenon, were observed regularly; in T1R Temporal Dispersion, a subacute phenomenon, was seen. During treatment remyelination occurred after both types of reactions.
Resumo:
There are few electrophysiologic studies in wild animals. The aim of this study was to determine normal data for motor nerve conduction studies and repetitive stimulation in sciatic-tibial and ulnar nerves in clinically normal captive coati. Eight adult ring-tailed coatis (Nasua nasua), two females and six males weighing 68 kg, were used. Average nerve conduction velocity was 70.81 m/sec (standard deviation [SD] = 3.98) and 56.93 m/sec (SD = 4.31) for the sciatic-tibial and ulnar nerves, respectively. Repetitive stimulation responses demonstrated minimal variations of the area of the compound muscle action potentials at low (3 Hz) and high (20 Hz) frequencies. The maximal obtained decremental area response was 8%. These normal data of conduction studies may be used in assessing abnormalities for clinical diagnosis. In addition, the obtained normal repetitive stimulation data were similar to dogs and humans and may be used for post- and presynaptic disturbances of the neuromuscular transmission in coatis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O trabalho teve por objetivos estudar a condução nervosa motora e a transmissão neuromuscular e eletromiografia de repouso em gatos normais (grupo I), submetidos a hiperparatireoidismo secundário nutricional (grupo II). Para estudo normativo (grupo I), foram utilizados 10 gatos, aparentemente saudáveis, sem raça definida, sendo seis machos e quatro fêmeas, com idades entre 4 e 5 meses e peso médio de 1,67kg. No grupo II, empregaram-se 10 gatos, sem raça definida, sendo cinco machos e cinco fêmeas, com idade aproximada inicial entre 2 e 3 meses e peso inicial médio de 820 gramas. Após um período de adaptação de 10 dias, foram alimentados por 60 dias com coração bovino moído e cru, visando a indução de hiperparatireoidismo secundário nutricional. Foi possível concluir que latência, amplitude e velocidade de condução nervosa motora e os achados eletromiográficos das atividades insercional e espontânea de gatos com hiperparatireoisdismo secundário nutricional, apresentaram um padrão similar aos de gatos normais da mesma idade. Para estimulações repetitivas a 3Hz, observou-se tendência global a decremento dos potenciais de ação musculares compostos e a 10 Hz houve tendência de incremento ou decremento; entretanto, tais variações apresentaram-se dentro dos limites de normalidade.
Resumo:
The neuromodulatory effect of nitric oxide (NO) on glutamatergic transmission within the NTS related to cardiovascular regulation has been widely investigated. Activation of glutamatergic receptors in the NTS stimulates the production and release of NO and other nitrosyl substances with neurotransmitter/neuromodulator properties. The presence of NOS, including the protein nNOS and its mRNA in vagal afferent terminals in the NTS and nodose ganglion cells suggest that NO can act on glutamatergic transmission. We previously reported that iontophoresis of L-NAME on NTS neurons receiving vagal afferent inputs significantly decreased the number of action potentials evoked by iontophoretic application of AMPA. In addition, iontophoresis of the NO donor papaNONOate enhanced spontaneous discharge and the number of action potentials elicited by AMPA, suggesting that NO could be facilitating AMPA-mediated neuronal transmission within the NTS. Furthermore, the changes in renal sympathetic discharge during activation of baroreceptors and cardiopulmonary receptors involve activation of AMPA and NMDA receptors in the NTS and these responses are attenuated by microinjection of L-NAME in the NTS of conscious and anesthetized rats. Cardiovascular responses elicited by application of NO in the NTS are closely similar to those obtained after activation of vagal afferent inputs, and L-glutamate is the main neurotransmitter of vagal afferent fibers. In this review we discuss the possible neuromodulatory mechanisms of central produced/released NO on glutamatergic transmission within the NTS.
Resumo:
Molecular neurobiology has provided an explanation of mechanisms supporting mental functions as learning, memory, emotion and consciousness. However, an explanatory gap remains between two levels of description: molecular mechanisms determining cellular and tissue functions, and cognitive functions. In this paper we review molecular and cellular mechanisms that determine brain activity, and then hypothetize about their relation with cognition and consciousness. The brain is conceived of as a dynamic system that exchanges information with the whole body and the environment. Three explanatory hypotheses are presented, stating that: a) brain tissue function is coordinated by macromolecules controlling ion movements, b) structured (amplitude, frequency and phase-modulated) local field potentials generated by organized ionic movement embody cognitive information patterns, and c) conscious episodes are constructed by a large-scale mechanism that uses oscillatory synchrony to integrate local field patterns. © by São Paulo State University.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)