910 resultados para multilocus sequence typing
Resumo:
An online scheme to assign Stenotrophomonas isolates to genomic groups was developed using the multilocus sequence analysis (MLSA), which is based on the DNA sequencing of selected fragments of the housekeeping genes ATP synthase alpha subunit (atpA), the recombination repair protein (recA), the RNA polymerase alpha subunit (rpoA) and the excision repair beta subunit (uvrB). This MLSA-based scheme was validated using eight of the 10 Stenotrophomonas species that have been previously described. The environmental and nosocomial Stenotrophomonas strains were characterised using MLSA, 16S rRNA sequencing and DNA-DNA hybridisation (DDH) analyses. Strains of the same species were found to have greater than 95% concatenated sequence similarity and specific strains formed cohesive readily recognisable phylogenetic groups. Therefore, MLSA appeared to be an effective alternative methodology to amplified fragment length polymorphism fingerprint and DDH techniques. Strains of Stenotrophomonas can be readily assigned through the open database resource that was developed in the current study (www.steno.lncc.br/).
Resumo:
We report two ciprofloxacin and ofloxacin-resistant Neisseria gonorrhoeae strains that were isolated from the urethral discharge of male patients at the sexually transmitted diseases outpatient clinic of the Alfredo da Matta Foundation (Manaus, state of Amazonas, Brazil). The gonococci displayed minimal inhibitory concentrations (> 32.00 µg/mL) and three mutations in the quinolone resistance-determining region (S91F and D95G in GyrA and S87R in ParC). Both isolates were genotyped using N. gonorrhoeae multi-antigen sequence typing and the analysis showed that the ST225 which represented an emerging widespread multi-resistant clone that has also been associated with reduced susceptibility to ceftriaxone. We recommend continued surveillance of this pathogen to assess the efficacy of anti-gonococcal antibiotics in Brazil.
Resumo:
Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.
Resumo:
Recent population genetic studies suggest that staphylococcal cassette chromosome mec (SCCmec) was acquired much more frequently than previously thought. In the present study, we aimed to investigate the diversity of SCCmec elements in a local methicillin-resistant Staphylococcus aureus (MRSA) population. Each MRSA isolate (one per patient) recovered in the Vaud canton of Switzerland from January 2005 to December 2008 was analyzed by the double-locus sequence typing (DLST) method and SCCmec typing. DLST analysis indicated that 1,884/2,036 isolates (92.5%) belong to four predominant clones. As expected from the local spread of a clone, most isolates within clones harbored an identical SCCmec type. However, three to seven SCCmec types have been recovered in every predominant DLST clone, suggesting that some of these elements might have been acquired locally. This pattern could also be explained by distinct importations of related isolates into the study region. The addition of a third highly variable locus to further increase the discriminatory power of typing as well as epidemiological data suggested that most ambiguous situations were explained by the second hypothesis. In conclusion, our study showed that even if the acquisition of new SCCmec elements at a local level likely occurs, it does not explain all the diversity observed in the study region.
Resumo:
We described the colonization dynamics of Staphylococcus aureus in a group of 266 healthy carriers over a period of approximately 1 year. We used precise genotyping methods, i.e., amplified fragment length polymorphism (AFLP), spa typing, and double-locus sequence typing (DLST), to detect changes in strain identity. Strain change took place rather rarely: out of 89 carriers who had initially been colonized, only 7 acquired a strain different from the original one. Approximately one-third of the carriers eliminated the colonization, and a similar number became newly colonized. Some of these events probably represent detection failure rather than genuine colonization loss or acquisition. Lower bacterial counts were associated with increased probability of eliminating the colonization. We have confirmed a high mutation rate in the spa locus: 6 out of 53 strains underwent mutation in the spa locus. There was no overall change in S. aureus genotype composition.
Resumo:
To reliably differentiate among Staphylococcus aureus isolates we recently developed the Double Locus Sequence Typing (DLST) based on the analysis of partial sequences of clfB and spa genes. This method is highly discriminatory and gives unambiguous definition of types. The highly clonal population structure of S. aureus suggests that isolates with identical clfB or spa alleles belong to the same clonal complex (CC) defined by Multi-Locus Sequence Typing (MLST). To test this hypothesis as well as to investigate putative intra-CC genetic structure, we analyzed a total of 289 isolates (186 MSSA and 103 MRSA) with DLST-, spa- and MLST-typing. Among the 289 strains, 242 were clustered into 7 major MLST CCs, 40 into minor CCs and 7 were not grouped into CCs. A total of 205 DLST- and 129 spa-types were observed. With one exception, all DLST-clfB, DLST-spa and spa-type alleles were segregated into CCs. DLST-types sharing an identical allele (clfB or spa) were clustered using eBURST. Except for one strain, all isolates from each DLST cluster belonged to the same CC. However, using both DLST- and spa-typing we were not able to disclose a clear intra-CC structure. Nevertheless, the high diversity of these loci confirmed that they are good markers for local epidemiological investigations.
Resumo:
Objectives: Recent population genetic studies suggest that the Staphylococcal Chromosome Cassettes mec (SCCmec) was acquired at a global scale much more frequently than previously thought. We hypothesized that such acquisitions can also be observed at a local level. In the present study, we aimed at investigating the diversity of SCCmec in a local MRSA population, where the dissemination of four MRSA clones has been observed (JCM 2007, 45: 3729). Methods: All the MRSA isolates (one per patient) recovered in the Vaud canton of Switzerland from January 2005 to December 2008 were analyzed in this study. We used the Double Locus Sequence Typing (DLST) method, based on clfB and spa loci, and the e-BURST algorithm to group the types with one allele in common (i.e. clone). To increase the discriminatory power of the DLST method, a third polymorphic marker (clfA) was further analyzed on a sub-sample of isolates. The SCCmec type of each isolate was determined with the first two PCRs of the Kondo scheme. Results: DLST analysis indicated that 1884/2036 isolates (92.5%) belong to the four predominant clones. A majority of isolates in each clone harboured an identical SCCmec type: 61/64 (95%) isolates to DLST clone 1−1 SCCmec IV, 1282/1323 (97%) to clone 2−2 SCCmec II, 237/288 (82%) to clone 3−3 SCCmec IV, and 192/209 (92%) to clone 4−4 SCCmec I. Unexpectedly, different SCCmec types were present in a single predominant DLST clone: SCCmec V plus one unusual type in 3 isolates of clone 1−1; SCCmec I, IV, V, VI plus two unusual types in 41 isolates of clone 2−2; SCCmec I, II, VI plus three unusual types in 51 isolates of clone 3−3; and SCCmec II, IV, V plus one unusual type in 17 isolates of clone 4−4. Interestingly, adding a third locus generally did not change the classification of incongruent SCCmec types, suggesting that these SCCmec elements have been acquired locally during the dissemination of the clones. Conclusion: Although the SCCmec diversity within clones was relatively low at a local level, a significant proportion of isolates with different SCCmec have been identified in the four major clones. This suggests that the local acquisition of SCCmec elements is not a rare event and illustrates the great capacity of S. aureus to quickly adapt to its environment by acquiring new genetic elements.
Resumo:
We conducted a molecular study of MRSA isolated in Swiss hospitals, including the first five consecutive isolates recovered from blood cultures and the first ten isolates recovered from other sites in newly identified carriers. Among 73 MRSA isolates, 44 different double locus sequence typing (DLST) types and 32 spa types were observed. Most isolates belonged to the NewYork/Japan, the UK-EMRSA-15, the South German and the Berlin clones. In a country with a low to moderate MRSA incidence, inclusion of non-invasive isolates allowed a more accurate description of the diversity.
Resumo:
S. Gianella, L. Haeberli, B. Joos, B. Ledergerber, R.P. Wüthrich, R. Weber, H. Kuster, P.M. Hauser, T. Fehr, N.J. Mueller. Molecular evidence of interhuman transmission in an outbreak of Pneumocystis jirovecii pneumonia among renal transplant recipients. Transpl Infect Dis 2009. All rights reserved Abstract: Pneumocystis jirovecii pneumonia (PCP) remains an important cause of morbidity and mortality in immunocompromised individuals. The epidemiology and pathogenesis of this infection are poorly understood, and the exact mode of transmission remains unclear. Recent studies reported clusters of PCP among immunocompromised patients, raising the suspicion of interhuman transmission. An unexpected increase of the incidence of PCP cases in our nephrology outpatient clinic prompted us to conduct a detailed analysis. Genotyping of 7 available specimens obtained from renal transplant recipients was performed using multi-locus DNA sequence typing (MLST). Fragments of 4 variable regions of the P. jirovecii genome (ITS1, 26S, mt26S, beta-tubulin) were sequenced and compared with those of 4 independent control patients. MLST analysis revealed identical sequences of the 4 regions among all 7 renal allograft recipients with available samples, indicating an infection with the same P. jirovecii genotype. We observed that all but 1 of the 19 PCP-infected transplant recipients had at least 1 concomitant visit with another PCP-infected patient within a common waiting area. This study provides evidence that nosocomial transmission among immunocompromised patients may have occurred in our nephrology outpatient clinic. Our findings have epidemiological implications and suggest that prolonged chemoprophylaxis for PCP may be warranted in an era of more intense immunosuppression.
Resumo:
Background: A hospitalised patient infected with MRSA was found to harbour a VISA strain after 6 weeks of treatment with vancomycin. Additional contact measures were reinforced according to CDCs recommendations. We decide to evaluate if these applied control measures were effective. Objective: To evaluate the efficacy of strict additional contact measures to contain the dissemination of VISA from an infected patient. Methods: All patients from the unit were screened weekly for MRSA during a 6-week period, whereas health care workers (HCW) were screened only once. Screening specimen included nose, throat, groin, and clinical specimens for patients, and only nose and throat for HCW. Broth enrichment and chromogenic agar (MRSA-select) were used for MRSA detection. All MRSA isolates were tested on Van screen plates, and growing colonies were tested for MIC of vancomycin. MIC was performed using Etest. Population analysis was done for VISA confirmation. One strain per person was typed by Double Locus Sequence Typing (based on clfB and spa sequencing). Results: 66 patients hospitalized in the same service during the 6 weeks and 55 HCW were screened for MRSA and VISA. MRSA was found in 16/66 (24%) patients and 1/55 (2%) HCW. 16/17 MRSA from patients belonged to the same genotype that the VISA strain. The remaining patient had a MRSA identical to the HCW isolate. Among the 16 MRSA isolates sharing the same genotype than the VISA strain, two showed Etests vancomycin MIC of only 4 mg/L. MIC results were confirmed by the population analysis. They were not considered as VISA, but as MRSA with increased vancomycin MICs. Both isolates were obtained from two roommates. Conclusion: Strict additional contact measures were found to be effective to contain VISA dissemination. However, the identification of two isolates with increased vancomycin MIC (4 mg/L) in two roommates raised the question of the need to routinely test this susceptibility and of adequate control measures for patients harbouring such isolates.
Resumo:
Objective: To describe an ongoing outbreak that tripled the annual detection of methicillin-resistant Staphylococcus aureus (MRSA) carriage in a tertiary care hospital. Methods: Active surveillance of MRSA is performed since 20 years in our hospital. Our protocol includes screening of patients transferred from high-incidence health-care institutions or countries, roommates of new MRSA cases, and wards where _2 patients acquired MRSA during the same week. Contact precautions are used for known carriers. PFGE was used for molecular typing until 2004, and was then replaced by Double-Locus Sequence Typing (DLST). Results: A median yearly incidence of 173 new carriers of MRSA was observed from 2002 to 2007. Since September 2008, an increasing number of new cases were observed, mainly as successive clusters limited to distinct wards, reaching a total of 398 until October 2009. The yearly incidence of new cases rose to 275 in 2008 and 613 in 2009. 60% of the cases were due to one strain: DLST 4−4, ST 228, SCCmecI. The incidence of new cases due to the previously predominant strains remained unchanged. The epidemic strain corresponded to a new variant of a clone responsible for a previous outbreak in 2001, and only sporadically isolated (mean of 20 cases/year) since then. A case- control study documented a significant association between acquisition of the epidemic strain and a stay in intensive and intermediary care units, a highest number of internal transfers, but did not identify a point source of transmission. Infection control practices and antibiotic policy had remained unchanged for several years. Compliance with handhygiene as monitored yearly was on the rise. Screening of 313 healthcare workers only found one carrier of the epidemic strain lately in the outbreak. Additional infection control measures were enforced, including screening at ICU admission and discharge with PCR-based rapid test, routine screening for all patients leaving epidemic wards, introduction of PCR-based rapid test for contact tracing, additional working forces for environmental disinfection, and hospital-wide education of healthcare workers. However, the outbreak was still ongoing after 5 months. Conclusions: Factors linked to the dissemination of this new variant in our institution remain undetermined. This unresolved outbreak suggests that this new variant acquired hyperepidemic properties, which calls for further investigations.
Resumo:
According to molecular epidemiology theory, two isolates belong to the same chain of transmission if they are similar according to a highly discriminatory molecular typing method. This has been demonstrated in outbreaks, but is rarely studied in endemic situations. Person-to-person transmission cannot be established when isolates of meticillin-resistant Staphylococcus aureus (MRSA) belong to endemically predominant genotypes. By contrast, isolates of infrequent genotypes might be more suitable for epidemiological tracking. The objective of the present study was to determine, in newly identified patients harbouring non-predominant MRSA genotypes, whether putative epidemiological links inferred from molecular typing could replace classical epidemiology in the context of a regional surveillance programme. MRSA genotypes were defined using double-locus sequence typing (DLST) combining clfB and spa genes. A total of 1,268 non-repetitive MRSA isolates recovered between 2005 and 2006 in Western Switzerland were typed: 897 isolates (71%) belonged to four predominant genotypes, 231 (18%) to 55 non-predominant genotypes, and 140 (11%) were unique. Obvious epidemiological links were found in only 106/231 (46%) patients carrying isolates with non-predominant genotypes suggesting that molecular surveillance identified twice as many clusters as those that may have been suspected with classical epidemiological links. However, not all of these molecular clusters represented person-to-person transmission. Thus, molecular typing cannot replace classical epidemiology but is complementary. A prospective surveillance of MRSA genotypes could help to target epidemiological tracking in order to recognise new risk factors in hospital and community settings, or emergence of new epidemic clones.
Resumo:
Avian pathogenic Escherichia coli (APEC) infections are responsible for significant losses in the poultry industry worldwide. A zoonotic risk has been attributed to APEC strains because they present similarities to extraintestinal pathogenic E. coli (ExPEC) associated with illness in humans, mainly urinary tract infections and neonatal meningitis. Here, we present in silico analyses with pathogenic E. coli genome sequences, including recently available APEC genomes. The phylogenetic tree, based on multi-locus sequence typing (MLST) of seven housekeeping genes, revealed high diversity in the allelic composition. Nevertheless, despite this diversity, the phylogenetic tree was able to cluster the different pathotypes together. An in silico virulence gene profile was also determined for each of these strains, through the presence or absence of 83 well-known virulence genes/traits described in pathogenic E. coli strains. The MLST phylogeny and the virulence gene profiles demonstrated a certain genetic similarity between Brazilian APEC strains, APEC isolated in the United States, UPEC (uropathogenic E. coli) and diarrheagenic strains isolated from humans. This correlation corroborates and reinforces the zoonotic potential hypothesis proposed to APEC.
Resumo:
In the UK, Campylobacter spp. and Lymphocytic Choriomeningitis Virus (LCMV), an Old World arenavirus, cause two zoonoses of concern that may be transmissible from rodents to humans and livestock. The aims of this preliminary investigation were to examine the occurrence of Campylobacter spp. and LCMV in Norway rats Rattus norvegicus on UK farms and to identify and characterise the Sequence Types of the Campylobacter isolates. Samples were collected from wild Norway rats and fresh Norway rat faeces. Multi Locus Sequence Typing (MLST) was performed on C. spp. isolates and samples were tested for arenavirus RNA by RT-PCR. Six C. spp. isolates were identified. One isolate was C. lari and five isolates were C. jejuni. Following MSLT profiling, three unique C. jejuni sequence types were identified. Two of which are novel and the third is typically associated with livestock and human infection. Nine positive results for LCMV were obtained giving an overall prevalence of 25% across four sites. This is higher than previously reported for this species.
Resumo:
Taxonomic characterization was performed on the putative N-2-fixing microbiota associated with the coral species Mussismilia hispida, and with its sympatric species Palythoa caribaeorum, P. variabilis, and Zoanthus solanderi, off the coast of Sao Sebastiao (Sao Paulo State, Brazil). The 95 isolates belonged to the Gammaproteobacteria according to the 16S rDNA gene sequences. In order to identify the isolates unambiguously, pyrH gene sequencing was carried out. The majority of the isolates (n = 76) fell within the Vibrio core group, with the highest gene sequence similarity being towards Vibrio harveyi and Vibrio alginolyticus. Nineteen representative isolates belonging to V. harveyi (n = 7), V. alginolyticus (n = 8), V. campbellii (n = 3), and V parahaemolyticus (n = 1) were capable of growing six successive times in nitrogen-free medium and some of them showed strong nitrogenase activity by means of the acetylene reduction assay (ARA). It was concluded that nitrogen fixation is a common phenotypic trait among Vibrio species of the core group. The fact that different Vibrio species can fix N, might explain why they are so abundant in the mucus of different coral species. (C) 2008 Published by Elsevier GmbH.