929 resultados para multi-view analysis
Resumo:
Agricultural water management needs to evolve in view of increased water scarcity, especially when farming and natural protected areas are closely linked. In the study site of Don?ana (southern Spain), water is shared by rice producers and a world heritage biodiversity ecosystem. Our aim is to contribute to defining adaptation strategies that may build resilience to increasing water scarcity and minimize water conflicts among agricultural and natural systems. The analytical framework links a participatory process with quantitative methods to prioritize the adaptation options. Bottom-up proposed adaptation measures are evaluated by a multi-criteria analysis (MCA) that includes both socioeconomic criteria and criteria of the ecosystem services affected by the adaptation options. Criteria weights are estimated by three different methods?analytic hierarchy process, Likert scale and equal weights?that are then compared. Finally, scores from an MCA are input into an optimization model used to determine the optimal land-use distribution in order to maximize utility and land-use diversification according to different scenarios of funds and water availability. While our results show a spectrum of perceptions of priorities among stakeholders, there is one overriding theme that is to define a way to restore part of the rice fields to natural wetlands. These results hold true under the current climate scenario and evenmore so under an increased water scarcity scenario.
Resumo:
A microwave-based thermal nebulizer (MWTN) has been employed for the first time as on-line preconcentration device in inductively coupled plasma atomic emission spectrometry (ICP-AES). By the appropriate selection of the experimental conditions, the MWTN could be either operated as a conventional thermal nebulizer or as on-line analyte preconcentration and nebulization device. Thus, when operating at microwave power values above 100 W and highly concentrated alcohol solutions, the amount of energy per solvent mass liquid unit (EMR) is high enough to completely evaporate the solvent inside the system and, as a consequence, the analyte is deposited (and then preconcentrated) on the inner walls of the MWTN capillary. When reducing the EMR to the appropriate value (e.g., by reducing the microwave power at a constant sample uptake rate) the retained analyte is swept along by the liquid-gas stream and an analyte-enriched aerosol is generated and next introduced into the plasma cell. Emission signals obtained with the MWTN operating in preconcentration-nebulization mode improved when increasing preconcentration time and sample uptake rate as well as when decreasing the nozzle inner diameter. When running with pure ethanol solution at its optimum experimental conditions, the MWTN in preconcentration-nebulization mode afforded limits of detection up to one order of magnitude lowers than those obtained operating the MWTN exclusively as a nebulizer. To validate the method, the multi-element analysis (i.e. Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb and Zn) of different commercial spirit samples in ICP-AES has been performed. Analyte recoveries for all the elements studied ranged between 93% and 107% and the dynamic linear range covered up to 4 orders of magnitude (i.e. from 0.1 to 1000 μg L−1). In these analysis, both MWTN operating modes afforded similar results. Nevertheless, the preconcentration-nebulization mode permits to determine a higher number of analytes due to its higher detection capabilities.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone condition. The objective of this work was to compare the Tropical Rapid Appraisal of Riparian Condition (TRARC) method to a satellite image based approach. TRARC was developed for rapid assessment of the environmental condition of savanna riparian zones. The comparison assessed mapping accuracy, representativeness of TRARC assessment, cost-effectiveness, and suitability for multi-temporal analysis. Two multi-spectral QuickBird images captured in 2004 and 2005 and coincident field data covering sections of the Daly River in the Northern Territory, Australia were used in this work. Both field and image data were processed to map riparian health indicators (RHIs) including percentage canopy cover, organic litter, canopy continuity, stream bank stability, and extent of tree clearing. Spectral vegetation indices, image segmentation and supervised classification were used to produce RHI maps. QuickBird image data were used to examine if the spatial distribution of TRARC transects provided a representative sample of ground based RHI measurements. Results showed that TRARC transects were required to cover at least 3% of the study area to obtain a representative sample. The mapping accuracy and costs of the image based approach were compared to those of the ground based TRARC approach. Results proved that TRARC was more cost-effective at smaller scales (1-100km), while image based assessment becomes more feasible at regional scales (100-1000km). Finally, the ability to use both the image and field based approaches for multi-temporal analysis of RHIs was assessed. Change detection analysis demonstrated that image data can provide detailed information on gradual change, while the TRARC method was only able to identify more gross scale changes. In conclusion, results from both methods were considered to complement each other if used at appropriate spatial scales.
Resumo:
Traditionally, machine learning algorithms have been evaluated in applications where assumptions can be reliably made about class priors and/or misclassification costs. In this paper, we consider the case of imprecise environments, where little may be known about these factors and they may well vary significantly when the system is applied. Specifically, the use of precision-recall analysis is investigated and compared to the more well known performance measures such as error-rate and the receiver operating characteristic (ROC). We argue that while ROC analysis is invariant to variations in class priors, this invariance in fact hides an important factor of the evaluation in imprecise environments. Therefore, we develop a generalised precision-recall analysis methodology in which variation due to prior class probabilities is incorporated into a multi-way analysis of variance (ANOVA). The increased sensitivity and reliability of this approach is demonstrated in a remote sensing application.
Resumo:
The present work describes the development of a proton induced X-ray emission (PIXE) analysis system, especially designed and builtfor routine quantitative multi-elemental analysis of a large number of samples. The historical and general developments of the analytical technique and the physical processes involved are discussed. The philosophy, design, constructional details and evaluation of a versatile vacuum chamber, an automatic multi-sample changer, an on-demand beam pulsing system and ion beam current monitoring facility are described.The system calibration using thin standard foils of Si, P, S,Cl, K, Ca, Ti, V, Fe, Cu, Ga, Ge, Rb, Y and Mo was undertaken at proton beam energies of 1 to 3 MeV in steps of 0.5 MeV energy and compared with theoretical calculations. An independent calibration check using bovine liver Standard Reference Material was performed. The minimum detectable limits have been experimentally determined at detector positions of 90° and 135° with respect to the incident beam for the above range of proton energies as a function of atomic number Z. The system has detection limits of typically 10- 7 to 10- 9 g for elements 14
Resumo:
This is a multiple case study of the leadership language of three senior women working in a large corporation in Bahrain. The study’s main aim is to explore the linguistic practices the women leaders use with their colleagues and subordinates in corporate meetings. Adopting a Foucauldian (1972) notion of ‘discourses’ as social practices and a view of gender as socially constructed and discursively performed (Butler 1990), this research aims to unveil the competing discourses which may shape the leadership language of senior women in their communities of practice. The research is situated within the broader field of Sociolinguistics and the specific field of Language and Gender. To address the research aim, a case study approach incorporating multiple methods of qualitative data collection (observation, interviews, and shadowing) was utilised to gather information about the three women leaders and produce a rich description of their use of language in and out of meeting contexts. For analysis, principles of Qualitative Data Analysis (QDA) were used to organise and sort the large amount of data. Also, Feminist Post- Structuralist Discourse Analysis (FPDA) was adopted to produce a multi-faceted analysis of the subjects, their language leadership, power relations, and competing discourses in the context. It was found that the three senior women enact leadership differently making variable use of a repertoire of conventionally masculine and feminine linguistic practices. However, they all appear to have limited language resources and even more limiting subject positions; and they all have to exercise considerable linguistic expertise to police and modify their language in order to avoid the ‘double bind’. Yet, the extent of this limitation and constraints depends on the community of practice with its prevailing discourses, which appear to have their roots in Islamic and cultural practices as well as some Western influences acquired throughout the company’s history. It is concluded that it may be particularly challenging for Middle Eastern women to achieve any degree of equality with men in the workplace because discourses of Gender difference lie at the core of Islamic teaching and ideology.
Resumo:
This paper addresses the problem of obtaining 3d detailed reconstructions of human faces in real-time and with inexpensive hardware. We present an algorithm based on a monocular multi-spectral photometric-stereo setup. This system is known to capture high-detailed deforming 3d surfaces at high frame rates and without having to use any expensive hardware or synchronized light stage. However, the main challenge of such a setup is the calibration stage, which depends on the lights setup and how they interact with the specific material being captured, in this case, human faces. For this purpose we develop a self-calibration technique where the person being captured is asked to perform a rigid motion in front of the camera, maintaining a neutral expression. Rigidity constrains are then used to compute the head's motion with a structure-from-motion algorithm. Once the motion is obtained, a multi-view stereo algorithm reconstructs a coarse 3d model of the face. This coarse model is then used to estimate the lighting parameters with a stratified approach: In the first step we use a RANSAC search to identify purely diffuse points on the face and to simultaneously estimate this diffuse reflectance model. In the second step we apply non-linear optimization to fit a non-Lambertian reflectance model to the outliers of the previous step. The calibration procedure is validated with synthetic and real data.
Resumo:
The seminal multiple-view stereo benchmark evaluations from Middlebury and by Strecha et al. have played a major role in propelling the development of multi-view stereopsis (MVS) methodology. The somewhat small size and variability of these data sets, however, limit their scope and the conclusions that can be derived from them. To facilitate further development within MVS, we here present a new and varied data set consisting of 80 scenes, seen from 49 or 64 accurate camera positions. This is accompanied by accurate structured light scans for reference and evaluation. In addition all images are taken under seven different lighting conditions. As a benchmark and to validate the use of our data set for obtaining reasonable and statistically significant findings about MVS, we have applied the three state-of-the-art MVS algorithms by Campbell et al., Furukawa et al., and Tola et al. to the data set. To do this we have extended the evaluation protocol from the Middlebury evaluation, necessitated by the more complex geometry of some of our scenes. The data set and accompanying evaluation framework are made freely available online. Based on this evaluation, we are able to observe several characteristics of state-of-the-art MVS, e.g. that there is a tradeoff between the quality of the reconstructed 3D points (accuracy) and how much of an object’s surface is captured (completeness). Also, several issues that we hypothesized would challenge MVS, such as specularities and changing lighting conditions did not pose serious problems. Our study finds that the two most pressing issues for MVS are lack of texture and meshing (forming 3D points into closed triangulated surfaces).
Resumo:
The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for μXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for μXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for μXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.
Resumo:
A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.
Resumo:
Currently, the decision analysis in production processes involves a level of detail, in which the problem is subdivided to analyze it in terms of different and conflicting points of view. The multi-criteria analysis has been an important tool that helps assertive decisions related to the production process. This process of analysis has been incorporated into various areas of production engineering, by applying multi-criteria methods in solving the problems of the productive sector. This research presents a statistical study on the use of multi-criteria methods in the areas of Production Engineering, where 935 papers were filtered from 20.663 publications in scientific journals, considering a level of the publication quality based on the impact factor published by the JCR between 2010 and 2015. In this work, the descriptive statistics is used to represent some information and statistical analysis on the volume of applications methods. Relevant results were found with respect to the "amount of advanced methods that are being applied and in which areas related to Production Engineering." This information may provide support to researchers when preparing a multi-criteria application, whereupon it will be possible to check in which issues and how often the other authors have used multi-criteria methods.
Resumo:
Resumen La Evaluación Múlticriterio (EMC), integra las diferentes dimensiones de una realidad en un sólo marco de análisis, para brindar un acercamiento de la gestión del recurso hídrico en los cantones Barva, Santa Bárbara y San Rafael de Heredia, con el objetivo de generar las políticas hídricas locales adecuadas. Esta estructura metodológica presenta una gran transparencia como herramienta en la toma de decisiones, identificando claramente los diferentes actores involucrados, describiendo, al mismo tiempo los problemas de gestión del recurso hídrico en la zona; a la vez que permite delimitar los conflictos sociales y mostrar diferentes posibilidades para su solución a través de compromisos y diálogo entre las partes. De éste diálogo emergen soluciones concretas, estructuradas como políticas locales hídricas, tales como: Planes de Gestión Hídrica, Inversión Pública y Privada, Coordinación Institucional, Reforma Institucional/legal. La zona presenta una atmósfera conflictiva alrededor de la gestión del agua y por tanto en la estructuración de políticas hídricas locales. Esta conflictividad ‘sectorial’(es decir por cantón) se superpone a una extraordinaria conflictividad ‘territorial’. La escasez o competencia sobre el agua se fundamenta en unas demandas crecientes que son expresión de un proceso de desarrollo urbano y turístico acelerado y desordenado. Abstract The Evaluation Multi-criteria analysis (EMA), integrates the different dimensions of a reality in an analysis mark, to offer an approach of the administration of the hydric resources in the Heredia´s cities of Barva, Santa Bárbara and San Rafael, with the objective of generating the local adequate hydrics policies. This methodological structure presents a great transparency like tool in the taking of decisions, identifying the different involved actors clearly, describing, at the same time, the problems of administration of the hydric resources in the area; and at the same time, it allows to define the social conflicts, as showing different possibilities for their solution through commitments and dialogue among the parts. Of this dialogue concrete solutions they emerge, structured as hydrics local policies, such as: Plans of hydric management, Public and Private Investment, Institutional Coordination, Institucional/legal reforms. The area presents a conflicting atmosphere around the administration of the water and therefore in the structuring of local hydrics policies. This conflict 'sectorial' (to say for canton) it is superimposed to an extraordinary 'territorial' conflict. The shortage or competition for water are based in some growing demands that are expression of a process of quick and disordered urban and tourist development.