955 resultados para movie camera
Resumo:
For broadcasting purposes MIXED REALITY, the combination of real and virtual scene content, has become ubiquitous nowadays. Mixed Reality recording still requires expensive studio setups and is often limited to simple color keying. We present a system for Mixed Reality applications which uses depth keying and provides threedimensional mixing of real and artificial content. It features enhanced realism through automatic shadow computation which we consider a core issue to obtain realism and a convincing visual perception, besides the correct alignment of the two modalities and correct occlusion handling. Furthermore we present a possibility to support placement of virtual content in the scene. Core feature of our system is the incorporation of a TIME-OF-FLIGHT (TOF)-camera device. This device delivers real-time depth images of the environment at a reasonable resolution and quality. This camera is used to build a static environment model and it also allows correct handling of mutual occlusions between real and virtual content, shadow computation and enhanced content planning. The presented system is inexpensive, compact, mobile, flexible and provides convenient calibration procedures. Chroma-keying is replaced by depth-keying which is efficiently performed on the GRAPHICS PROCESSING UNIT (GPU) by the usage of an environment model and the current ToF-camera image. Automatic extraction and tracking of dynamic scene content is herewith performed and this information is used for planning and alignment of virtual content. An additional sustainable feature is that depth maps of the mixed content are available in real-time, which makes the approach suitable for future 3DTV productions. The presented paper gives an overview of the whole system approach including camera calibration, environment model generation, real-time keying and mixing of virtual and real content, shadowing for virtual content and dynamic object tracking for content planning.
Resumo:
This contribution discusses the effects of camera aperture correction in broadcast video on colour-based keying. The aperture correction is used to ’sharpen’ an image and is one element that distinguishes the ’TV-look’ from ’film-look’. ’If a very high level of sharpening is applied, as is the case in many TV productions then this significantly shifts the colours around object boundaries with hight contrast. This paper discusses these effects and their impact on keying and describes a simple low-pass filter to compensate for them. Tests with colour-based segmentation algorithms show that the proposed compensation is an effective way of decreasing the keying artefacts on object boundaries.
Resumo:
When depicting both virtual and physical worlds, the viewer's impression of presence in these worlds is strongly linked to camera motion. Plausible and artist-controlled camera movement can substantially increase scene immersion. While physical camera motion exhibits subtle details of position, rotation, and acceleration, these details are often missing for virtual camera motion. In this work, we analyze camera movement using signal theory. Our system allows us to stylize a smooth user-defined virtual base camera motion by enriching it with plausible details. A key component of our system is a database of videos filmed by physical cameras. These videos are analyzed with a camera-motion estimation algorithm (structure-from-motion) and labeled manually with a specific style. By considering spectral properties of location, orientation and acceleration, our solution learns camera motion details. Consequently, an arbitrary virtual base motion, defined in any conventional animation package, can be automatically modified according to a user-selected style. In an animation package the camera motion base path is typically defined by the user via function curves. Another possibility is to obtain the camera path by using a mixed reality camera in motion capturing studio. As shown in our experiments, the resulting shots are still fully artist-controlled, but appear richer and more physically plausible.
Resumo:
A digital camera was used to obtain digital images of beef carcasses moving on the rail in commercial beef packing plants. These images were satisfactory for measurement of backfat thickness and area of ribeye. The measurements were closely correlated with the same two measurements taken from tracings on acetate paper of fat thickness and area of ribeye made on carcasses moving on the rail.
Resumo:
Detector uniformity is a fundamental performance characteristic of all modern gamma camera systems, and ensuring a stable, uniform detector response is critical for maintaining clinical images that are free of artifact. For these reasons, the assessment of detector uniformity is one of the most common activities associated with a successful clinical quality assurance program in gamma camera imaging. The evaluation of this parameter, however, is often unclear because it is highly dependent upon acquisition conditions, reviewer expertise, and the application of somewhat arbitrary limits that do not characterize the spatial location of the non-uniformities. Furthermore, as the goal of any robust quality control program is the determination of significant deviations from standard or baseline conditions, clinicians and vendors often neglect the temporal nature of detector degradation (1). This thesis describes the development and testing of new methods for monitoring detector uniformity. These techniques provide more quantitative, sensitive, and specific feedback to the reviewer so that he or she may be better equipped to identify performance degradation prior to its manifestation in clinical images. The methods exploit the temporal nature of detector degradation and spatially segment distinct regions-of-non-uniformity using multi-resolution decomposition. These techniques were tested on synthetic phantom data using different degradation functions, as well as on experimentally acquired time series floods with induced, progressively worsening defects present within the field-of-view. The sensitivity of conventional, global figures-of-merit for detecting changes in uniformity was evaluated and compared to these new image-space techniques. The image-space algorithms provide a reproducible means of detecting regions-of-non-uniformity prior to any single flood image’s having a NEMA uniformity value in excess of 5%. The sensitivity of these image-space algorithms was found to depend on the size and magnitude of the non-uniformities, as well as on the nature of the cause of the non-uniform region. A trend analysis of the conventional figures-of-merit demonstrated their sensitivity to shifts in detector uniformity. The image-space algorithms are computationally efficient. Therefore, the image-space algorithms should be used concomitantly with the trending of the global figures-of-merit in order to provide the reviewer with a richer assessment of gamma camera detector uniformity characteristics.
Resumo:
During the last years the use of tracking cameras for SLR observations became less important due to the high accuracy of the predicted orbits. Upcoming new targets like satellites in eccentric orbits and space debris objects, however, require tracking cameras again. In 2013 the interline CCD camera was replaced at the Zimmerwald Observatory with a so called scientific CMOS camera. This technology promises a better performance for this application than all kinds of CCD cameras. After the comparison of the different technologies the focus will be on the integration in the Zimmerwald SLR system.
Resumo:
lettera aperta di J. S. Bloch
Resumo:
Efforts are ongoing to decrease the noise of the GRACE gravity field models and hence to arrive closer to the GRACE baseline. The most significant error sources belong the untreated errors in the observation data and the imperfections in the background models. The recent study (Bandikova&Flury,2014) revealed that the current release of the star camera attitude data (SCA1B RL02) contain noise systematically higher than expected by about a factor 3-4. This is due to an incorrect implementation of the algorithms for quaternion combination in the JPL processing routines. Generating improved SCA data requires that valid data from both star camera heads are available which is not always the case because the Sun and Moon at times blind one camera. In the gravity field modeling, the attitude data are needed for the KBR antenna offset correction and to orient the non-gravitational linear accelerations sensed by the accelerometer. Hence any improvement in the SCA data is expected to be reflected in the gravity field models. In order to quantify the effect on the gravity field, we processed one month of observation data using two different approaches: the celestial mechanics approach (AIUB) and the variational equations approach (ITSG). We show that the noise in the KBR observations and the linear accelerations has effectively decreased. However, the effect on the gravity field on a global scale is hardly evident. We conclude that, at the current level of accuracy, the errors seen in the temporal gravity fields are dominated by errors coming from sources other than the attitude data.
Resumo:
Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions.
Resumo:
A three-level satellite to ground monitoring scheme for conservation easement monitoring has been implemented in which high-resolution imagery serves as an intermediate step for inspecting high priority sites. A digital vertical aerial camera system was developed to fulfill the need for an economical source of imagery for this intermediate step. A method for attaching the camera system to small aircraft was designed, and the camera system was calibrated and tested. To ensure that the images obtained were of suitable quality for use in Level 2 inspections, rectified imagery was required to provide positional accuracy of 5 meters or less to be comparable to current commercially available high-resolution satellite imagery. Focal length calibration was performed to discover the infinity focal length at two lens settings (24mm and 35mm) with a precision of O.1mm. Known focal length is required for creation of navigation points representing locations to be photographed (waypoints). Photographing an object of known size at distances on a test range allowed estimates of focal lengths of 25.lmm and 35.4mm for the 24mm and 35mm lens settings, respectively. Constants required for distortion removal procedures were obtained using analytical plumb-line calibration procedures for both lens settings, with mild distortion at the 24mm setting and virtually no distortion found at the 35mm setting. The system was designed to operate in a series of stages: mission planning, mission execution, and post-mission processing. During mission planning, waypoints were created using custom tools in geographic information system (GIs) software. During mission execution, the camera is connected to a laptop computer with a global positioning system (GPS) receiver attached. Customized mobile GIs software accepts position information from the GPS receiver, provides information for navigation, and automatically triggers the camera upon reaching the desired location. Post-mission processing (rectification) of imagery for removal of lens distortion effects, correction of imagery for horizontal displacement due to terrain variations (relief displacement), and relating the images to ground coordinates were performed with no more than a second-order polynomial warping function. Accuracy testing was performed to verify the positional accuracy capabilities of the system in an ideal-case scenario as well as a real-world case. Using many welldistributed and highly accurate control points on flat terrain, the rectified images yielded median positional accuracy of 0.3 meters. Imagery captured over commercial forestland with varying terrain in eastern Maine, rectified to digital orthophoto quadrangles, yielded median positional accuracies of 2.3 meters with accuracies of 3.1 meters or better in 75 percent of measurements made. These accuracies were well within performance requirements. The images from the digital camera system are of high quality, displaying significant detail at common flying heights. At common flying heights the ground resolution of the camera system ranges between 0.07 meters and 0.67 meters per pixel, satisfying the requirement that imagery be of comparable resolution to current highresolution satellite imagery. Due to the high resolution of the imagery, the positional accuracy attainable, and the convenience with which it is operated, the digital aerial camera system developed is a potentially cost-effective solution for use in the intermediate step of a satellite to ground conservation easement monitoring scheme.
Resumo:
Signatur des Originals: S 36/F06938
Resumo:
"Experimental Movie Project" (1945-46):; 1. "Below the Surface", Drehbuch des Testfilms, a) als Typoskript vervielfältigt, 46 Blatt, b) als Typoskript vervielfältigt, 26 Blatt, c) als Typoskript vervielfältigt, 26 Blatt, d) als Typoskript vervielfältigt, 26 Blatt "Experimental Movie Project" (1945-46): Memoranden zum Test; 2. 'Notes' 25.4.1946, Typoskript, 1 Blatt; 3. "Memorandum on Experimental Movie Project", 19.4.1946. Typoskript, 3 Blatt; 4. "Memorandum re: 'Below the Surface" (Juli 1945). Typoskript, 2 Blatt; 5. Dore Schary und Allen Rivkin: 'Memorandum, Subject: New Suggested Treatment for 'Below the Surface'", 13.7.1945. Typoskript, 2 Blatt; 6. Hans Richter: "Report about the film script 'Below the surface'", 7. u. 8.7.1945, a) Typoskript, 1 Blatt, b) Typoskript, 1 Blatt; 7. Hans Richter: Bestätigung der Vereinbarung mit dem American Jewish Committee, 3.7.1945. Typoskript, 1 Blatt; 8. "Notes and Suggestions re Experimental Motion Picture", Juni 1945. Typoskript, 2 Blatt; 9. Siegfried Kracauer; "Suggestions for the Dialogue" (4.4.1945). Typoskript, 3 Blatt; 10. "Motion Picture", März 1945. Typoskript, 5 Blatt; 11. "Project on a Test film", a) Typoskript, 4 Blatt, b) Typoskript, 5 Blatt; 12. "Memorandum re: 'Below the Surface'", a) Typoskript, 3 Blatt, b) Typoskript mit eigenhändigen Korrekturen von Theodor W. Adorno, 3 Blatt; "Experimental Movie Project" (1945-46): Korrespondenz zum Test-Film-Projekt:; 13. Friedrich Pollock: 1 Brief an Max Horkheimer, Santa Monica, California, 12.10.1945; 14. Theodor W. Adorno: 2 Briefe an Max Horkheimer, Los Angeles und Santa Monica, California, 1945; 15. Joseph M. Proskauer: 1 Brief von Max Horkheimer, o.O., 29.6.1945, 1 Brief mit Unterschrift an Max Horkheimer, o.O., o.D., 3 Blatt; 16. Alexander Hackenschmied, 1 Brief mit Unterschrift an Max Horkheimer, New York, 19.6.1945, 1 Blatt; 17. Gilbert Gabriel: 1 Brief von John Slawson, o.O., 22.3.1945, 2 Blatt; "The Police and Minority Groups" (1946):; 1. "The Police and Minority Groups". Typoskript, 2 Blatt; 2. Robert W. Kenny: "Police and Minority Groups - an Experiment". Als Typoskript vervielfältigt, 17 Blatt; 3. Davis McEntire, Robert B. Powers: "Police Training Bulletin. A Guide to Race Relations for Police Officers", State of California, 1946, 38 Seiten; Max Horkheimer: "Memorandum on a Study of Race Hatred in Post-War Germany" (1946):; 1. Memorandum, a) Typoskript, 8 Blatt, b) Typoskript mit eigenhändigen und handschriftlichen Korrekturen, 6 Blatt, c) Typoskript, 5 Blatt, d) Teilstück, Typoskript mit eigenhändigen Korrekturen, 1 Blatt e) Typoskript mit eigenhändigen Korrekturen, 5 Blatt, f) Teilstück, Typoskript mit handschriftlichen Korrekturen, 2 Blatt, g) Typoskript mit eigenhändigen Korrekturen, 7 Blatt, h) Teilstück, Typoskript mit eigenhändigen Korrekturen und Ergänzungen, 1 Blatt, i) Typoskript, 2 Blatt; 2. Theodor W. Adorno: "Ad Memorandum Neumann", Manuskript, 3 Blatt;