948 resultados para molecular systematics, mosses, evolution
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Floral anatomy is described in ten genera of Bromeliaceae, including three members of subfamily Bromelioideae, three Tillandsioideae, and four genera of the polyphyletic subfamily Pitcairnioideae (including Brocchinia, the putatively basal genus of Bromeliaceae). Bromeliaceae are probably unique in the order Poales in possessing septal nectaries and epigynous or semi-epigynous flowers. Evidence presented here from floral ontogeny, vasculature, and the relative positions of nectary and ovules indicates that there could have been one or more reversals to apparent hypogyny in Bromeliaceae, although this hypothesis requires a better-resolved phylogeny. Such evolutionary reversals probably evolved in response to specialist pollinators, and in conjunction with other aspects of floral morphology of Bromeliaceae, such as the petal appendages of some species. The ovary is initiated in an inferior position even in semi-epigynous or hypogynous species. The ovary of all so-called hypogynous Bromeliaceae is actually semi-inferior, because the septal nectary is infralocular; in these species the nectaries have a labyrinthine surface and many vascular bundles. Brocchinia differs from most other fully epigynous species in that each carpel is secretory at the apex and reproductive, rather than secretory, at the base.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A molecular phylogenetic analysis of the Hyla pulchella species group was performed to test its monophyly, explore the interrelationships of its species, and evaluate the validity of the taxa that were considered subspecies of H. pulchella. Approximately 2.8 kb from the mitochondrial genes 12s, tRNA valine, 16s, and Cytochrome b were sequenced. The analysis included 50 terminals representing 10 of the 14-15 species currently recognized in the H. pulchella group, including samples from several localities for some taxa, several outgroups, as well as two species previously suspected to be related with the group (Hyla guentheri and Hyla hischoffi). The results show that the H. pulchella and Hyla circumdata groups are distantly related, and, therefore, should be recognized as separate groups. As currently defined, the H. pulchella group is paraphyletic with respect to the Hyla polytaenia group; therefore, we recognize the Hyla polytaenia clade in the H. pulchella group. Two subspecies of H. pulchella recognized by some authors are considered full species including Hyla pulchella riojana because it is only distantly related to H. pulchella, and Hyla pulchella cordobae because molecular and non-molecular evidence suggests that it is specifically distinct. With the inclusion of the H. polytaenia clade, H. guentheri, and H. bischoffi, and the recognition of the two former subspecies of H. pulchella as distinct species, the H. pulchella group now comprises 25 described species. All representatives of the H. pulchella group with an Andean distribution are monophyletic and nested within a clade from the Atlantic forest from south-southeastern Brazil/northeastern Argentina, and Cerrado gallery forest from central Brazil. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The first quantitative analysis of phylogenetic relationships of green lacewings (Chrysopidae) is presented based on DNA sequence data. A single nuclear and two mitochondrial genes are used in the analysis: carbomoylphosphate synthase (CPS) domain of carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) (i.e. rudimentary locus), large subunit ribosomal gene (16S) and cytochrome oxidase I (COI). This study represents the first use of the CAD gene to investigate phylogenetic relationships of the lacewings. DNA sequences for 33 chrysopid species from 18 genera, representing all subfamilies and tribes, were compared with outgroups sampled from families Hemerobiidae, Osmylidae and Polystoechotidae. Parsimony analyses of the combined data set recovered all of the previously established subfamilial and tribal groups as monophyletic clades (although relatively weakly supported) except Apochrysinae sensu lato. The enigmatic Nothancyla verreauxi Navas has historically been difficult to place in a subfamily group based on morphological characteristics; molecular data presented herein do not adequately resolve this problem.
Resumo:
Toadlets of the genus Brachycephalus are endemic to the Atlantic rainforests of southeastern and southern Brazil. The 14 species currently described have snout-vent lengths less than 18. mm and are thought to have evolved through miniaturization: an evolutionary process leading to an extremely small adult body size. Here, we present the first comprehensive phylogenetic analysis for Brachycephalus, using a multilocus approach based on two nuclear (Rag-1 and Tyr) and three mitochondrial (Cyt b, 12S, and 16S rRNA) gene regions. Phylogenetic relationships were inferred using a partitioned Bayesian analysis of concatenated sequences and the hierarchical Bayesian method (BEST) that estimates species trees based on the multispecies coalescent model. Individual gene trees showed conflict and also varied in resolution. With the exception of the mitochondrial gene tree, no gene tree was completely resolved. The concatenated gene tree was completely resolved and is identical in topology and degree of statistical support to the individual mtDNA gene tree. On the other hand, the BEST species tree showed reduced significant node support relative to the concatenate tree and recovered a basal trichotomy, although some bipartitions were significantly supported at the tips of the species tree. Comparison of the log likelihoods for the concatenated and BEST trees suggests that the method implemented in BEST explains the multilocus data for Brachycephalus better than the Bayesian analysis of concatenated data. Landmark-based geometric morphometrics revealed marked variation in cranial shape between the species of Brachycephalus. In addition, a statistically significant association was demonstrated between variation in cranial shape and genetic distances estimated from the mtDNA and nuclear loci. Notably, B. ephippium and B. garbeana that are predicted to be sister-species in the individual and concatenated gene trees and the BEST species tree share an evolutionary novelty, the hyperossified dorsal plate. © 2011 Elsevier Inc.
Resumo:
Background: The leaf-cutter ant Atta laevigata (Formicidae: Attini) is an agricultural pest largely distributed in the Neotropics and a model organism for studies of evolution, speciation and population genetics. Microsatellites are a very powerful tool for these kind of studies, but such markers are not available for studies on A. laevigata. In the present report, we describe the isolation and characterization of nine microsatellite loci in A. laevigata and the testing of these markers across other species of leaf-cutter ants. Findings. Nine microsatellite loci, consisting of six dinucloeotide, one trinucleotide, one tetranucleotide, and one di/trinucleotide repeat motifs, were isolated and characterized. Primers and protocols were successfully designed to selectively amplify these markers. To test effectiveness of these markers for detailed population genetic studies, we genotyped female workers collected from 36 monogynic nests of A. laevigata and found that eight loci were within Hardy-Weinberg expectations, while the remaining locus had a deficiency of heterozygotes. Micro-Checker analysis of individuals from 55 monogynic nests indicated that loci Alae11, Alae24, Alae18 showed signs of null alleles. For the remaining six loci, the number of alleles per locus ranged between 2 and 11, with expected heterozygosity ranging between 0.07 and 0.88. All of these loci cross-amplified in other species of Atta. Conclusions: These six polymorphic microsatellite loci should prove useful for future genetic investigations of the pest species Atta laevigata, as well as studies of other species of leaf-cutter ants in the genus Atta. © 2013 Kakazu et al.; licensee BioMed Central Ltd.
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The taxonomic status of the species Clibanarius sclopetarius (Herbst, 1796) and Clibanarius vittatus (Bosc, 1802), which have sympatric biogeographical distributions restricted to the western Atlantic Ocean, is based only on differences in the colour pattern of the walking legs of adults. Their morphological similarity led to the suggestion that they be synonymised. In order to investigate this hypothesis, we included species of Clibanarius Dana, 1892 in a molecular phylogenetic analysis of partial sequences of the mitochondrial 16S rDNA gene and the COI barcode region. In addition, we combined the molecular results with morphological observations obtained from several samples of these two species. The genetic divergences of the 16S rDNA and COI sequences between C. sclopetarius and C. vittatus ranged from 4.5 to 5.9% and 9.4 to 11.9%, which did not justify their synonymisation. Differences in the telson morphology, chela ornamentation, and coloration of the eyestalks and antennal peduncle provided support for the separation of the two species. Another interesting result was a considerable genetic difference found between populations of C. vittatus from Brazil and the Gulf of Mexico, which may indicate the existence of two homonymous species.
Resumo:
Dendrophryniscus is an early diverging clade of bufonids represented by few small-bodied species distributed in Amazonia and the Atlantic Forest. We used mitochondrial (414 bp of 12S, 575 bp of 16S genes) and nuclear DNA (785 bp of RAG-1) to investigate phylogenetic relationships and the timing of diversification within the genus. These molecular data were gathered from 23 specimens from 19 populations, including eight out of the 10 nominal species of the genus as well as Rhinella boulengeri. Analyses also included sequences of representatives of 18 other bufonid genera that were publically available. We also examined morphological characters to analyze differences within Dendrophryniscus. We found deep genetic divergence between an Amazonian and an Atlantic Forest clade, dating back to Eocene. Morphological data corroborate this distinction. We thus propose to assign the Amazonian species to a new genus, Amazonella. The species currently named R. boulengeri, which has been previously assigned to the genus Rhamphophryne, is shown to be closely related to Dendrophryniscus species. Our findings illustrate cryptic trends in bufonid morphological evolution, and point to a deep history of persistence and diversification within the Amazonian and Atlantic rainforests. We discuss our results in light of available paleoecological data and the biogeographic patterns observed in other similarly distributed groups. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Historical climatic refugia predict genetic diversity in lowland endemics of the Brazilian Atlantic rainforest. Yet, available data reveal distinct biological responses to the Last Glacial Maximum (LGM) conditions across species of different altitudinal ranges. We show that species occupying Brazil's montane forests were significantly less affected by LGM conditions relative to lowland specialists, but that pre-Pleistocene tectonics greatly influenced their geographic variation. Our conclusions are based on palaeoclimatic distribution models, molecular sequences of the cytochrome b, 16S, and RAG-1 genes, and karyotype data for the endemic frog Proceratophrys boiei. DNA and chromosomal data identify in P. boiei at least two broadly divergent phylogroups, which have not been distinguished morphologically. Cytogenetic results also indicate an area of hybridization in southern Sao Paulo. The location of the phylogeographic break broadly matches the location of a NW-SE fault, which underwent reactivation in the Neogene and led to remarkable landscape changes in southeastern Brazil. Our results point to different mechanisms underpinning diversity patterns in lowland versus montane tropical taxa, and help us to understand the processes responsible for the large number of narrow endemics currently observed in montane areas of the southern Atlantic forest hotspot. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The evolutionary history of Hystricognathi is associated with major transformations in their placental system. Data so far indicate that key characters are independent from size dimensions in medium to very large species. To better understand the situation in smaller species, we analyzed placental development in a spiny rat, Thrichomys laurentinus. Fourteen individuals ranging from early implantation to near term were investigated by histology, immunohistochemistry, proliferation activity and electron microscopy. Placentation in Thrichomys revealed major parallels to the guinea pig and other hystricognath rodents with respect to the early and invasive implantation, the process of trophoblast invasion, the internal organization of the labyrinth and the trophospongium as well as the establishment of the complete inverted yolk sac placenta. In contrast to systematically related small-sized species, the placental regionalization in Thrichomys was characterized by a remarkable lobulated structure and associated growing processes. Reverse to former perspectives, these conditions represented ancient character states of hystricognaths. The subplacenta was temporarily supplied by both the maternal and fetal blood systems, a rare condition among hystricognaths. The extraplacental trophoblast originating from the subplacenta was partly proliferative in mid gestation. In conclusion, the presented results indicated that only minor variations occurred in small-sized hystricognath species, independent of their systematic interrelationships. Previous views were supported that placentation in hystricognaths followed an extraordinary stable pattern, although the group had distinct habitats in South America and Africa that were separated 30-40 million years ago. J. Exp. Zool. (Mol. Dev. Evol.) 318:13-25, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with major events that have shaped the face of the South American continent, as we know it today. (C) 2012 Elsevier Inc. All rights reserved.