311 resultados para modis
Resumo:
In the face of global population growth and the uneven distribution of water supply, a better knowledge of the spatial and temporal distribution of surface water resources is critical. Remote sensing provides a synoptic view of ongoing processes, which addresses the intricate nature of water surfaces and allows an assessment of the pressures placed on aquatic ecosystems. However, the main challenge in identifying water surfaces from remotely sensed data is the high variability of spectral signatures, both in space and time. In the last 10 years only a few operational methods have been proposed to map or monitor surface water at continental or global scale, and each of them show limitations. The objective of this study is to develop and demonstrate the adequacy of a generic multi-temporal and multi-spectral image analysis method to detect water surfaces automatically, and to monitor them in near-real-time. The proposed approach, based on a transformation of the RGB color space into HSV, provides dynamic information at the continental scale. The validation of the algorithm showed very few omission errors and no commission errors. It demonstrates the ability of the proposed algorithm to perform as effectively as human interpretation of the images. The validation of the permanent water surface product with an independent dataset derived from high resolution imagery, showed an accuracy of 91.5% and few commission errors. Potential applications of the proposed method have been identified and discussed. The methodology that has been developed 27 is generic: it can be applied to sensors with similar bands with good reliability, and minimal effort. Moreover, this experiment at continental scale showed that the methodology is efficient for a large range of environmental conditions. Additional preliminary tests over other continents indicate that the proposed methodology could also be applied at the global scale without too many difficulties
Resumo:
A cikkben egy nemesnyárültetvény őszi lombszíneződésének kutatását összegezzük, mellyel előkészítjük egy – a 21. században várható éghajlatváltozás hatására bekövetkező lombszíneződés-változást elemző – fenológiai modell építését. Bemutatjuk a kutatásba vont taxon (Populus X canadensis) kiválasztásának szempontjait, valamint a vizsgálati helyszín (Tiszaroff) kijelölésének fontosabb ismérveit. Áttekintjük a szabadon hozzáférhető adatokat szolgáltató szenzorokat és a lombszínre vonatkozó, korábban publikált, különböző mérőszámokat. A MODIS-szenzor három kiválaszott színcsatornájára építve újabb lombszíneződési mérőszámokat alkotunk, és ezeket kiértékeljük abból a szempontból, hogy várhatóan mennyire alkalmazhatóak az őszi lombszíneződés jövőbeli fenológiai eltolódásának és megváltozásának modellezése során.
Resumo:
Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W•m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth’s surface.
Resumo:
An algorithm based on a Bayesian network classifier was adapted to produce 10-day burned area (BA) maps from the Long Term Data Record Version 3 (LTDR) at a spatial resolution of 0.05° (~5 km) for the North American boreal region from 2001 to 2011. The modified algorithm used the Brightness Temperature channel from the Moderate Resolution Imaging Spectroradiometer (MODIS) band 31 T31 (11.03 μm) instead of the Advanced Very High Resolution Radiometer (AVHRR) band T3 (3.75 μm). The accuracy of the BA-LTDR, the Collection 5.1 MODIS Burned Area (MCD45A1), the MODIS Collection 5.1 Direct Broadcast Monthly Burned Area (MCD64A1) and the Burned Area GEOLAND-2 (BA GEOLAND-2) products was assessed using reference data from the Alaska Fire Service (AFS) and the Canadian Forest Service National Fire Database (CFSNFD). The linear regression analysis of the burned area percentages of the MCD64A1 product using 40 km × 40 km grids versus the reference data for the years from 2001 to 2011 showed an agreement of R2 = 0.84 and a slope = 0.76, while the BA-LTDR showed an agreement of R2 = 0.75 and a slope = 0.69. These results represent an improvement over the MCD45A1 product, which showed an agreement of R2 = 0.67 and a slope = 0.42. The MCD64A1, BA-LTDR and MCD45A1 products underestimated the total burned area in the study region, whereas the BA GEOLAND-2 product overestimated it by approximately five-fold, with an agreement of R2 = 0.05. Despite MCD64A1 showing the best overall results, the BA-LTDR product proved to be an alternative for mapping burned areas in the North American boreal forest region compared with the other global BA products, even those with higher spatial/spectral resolution
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, Programa de Pós-Graduação em Geografia, 2015.
Resumo:
Para análises dos parâmetros hídricos e de vegetação com ênfases em pivôs de irrigação, usou-se o produto MODIS MOD13Q1, em conjunto com dados agrometeorológicos nas áreas envolvidas pelos municípios do Noroeste de Minas Gerais, dentro da bacia hidrográfica do Rio Paracatu. A Evapotranspiração atual (ET) e a produção de biomassa (BIO) foram obtidas em toda a região de estudo sob diferentes condições termo hídricas, com aplicações do algoritmo SAFER e de Monteith. A produtividade da água (PA) nas áreas com pivôs, na maioria com a cultura do milho, foi estimada como a razão da BIO pela ET e e o resultado multiplicado pelo índice de colheita (IH) para dar a produtividade da água da cultura (PAC). A razão da ET para a evapotranspiração de referência (ET0) foi utilizada na elaboração de um modelo relacionando o coeficiente de cultura (Kc) e os graus-dias acumulados (GDac). Os resultados indicaram que a dinâmica dos parâmetros biofísicos em diferentes agros-ecossistemas pode ser monitorada nas resoluções espacial de 250 m e temporal de 16 dias e que o Kc determinado com imagens MODIS usados operacionalmente no manejo de irrigação.
Resumo:
Understanding spatial patterns of land use and land cover is essential for studies addressing biodiversity, climate change and environmental modeling as well as for the design and monitoring of land use policies. The aim of this study was to create a detailed map of land use land cover of the deforested areas of the Brazilian Legal Amazon up to 2008. Deforestation data from and uses were mapped with Landsat-5/TM images analysed with techniques, such as linear spectral mixture model, threshold slicing and visual interpretation, aided by temporal information extracted from NDVI MODIS time series. The result is a high spatial resolution of land use and land cover map of the entire Brazilian Legal Amazon for the year 2008 and corresponding calculation of area occupied by different land use classes. The results showed that the four classes of Pasture covered 62% of the deforested areas of the Brazilian Legal Amazon, followed by Secondary Vegetation with 21%. The area occupied by Annual Agriculture covered less than 5% of deforested areas; the remaining areas were distributed among six other land use classes. The maps generated from this project ? called TerraClass - are available at INPE?s web site (http://www.inpe.br/cra/projetos_pesquisas/terraclass2008.php)
Resumo:
As respostas espectrais monitoradas pelo sensor MODIS (MODerate-resolution Imaging Spectroradiometer) podem auxiliar não apenas na identificação dos cultivos, mas também no sistema de manejo adotado pelos produtores rurais de uma região. Objetivou-se com este trabalho avaliar respostas da soja através de índices de vegetação realçado (EVI) extraídos do MODIS como resposta a dinâmica da soja em sistema plantio direto no Estado de Mato Grosso. A área considerada abrange 23 municípios mais representativos na produção de soja no Estado, respondendo no ano agrícola de 2005-2006 a cerca de 65% da produção de soja no Estado. O índice biofísico EVI é eficiente para mapear áreas com cultivos de soja e identificar áreas que adotam práticas conservacionistas como as preconizadas pelo sistema plantio direto. A evolução espaço-temporal do plantio direto apontado pelas respostas espectrais aponta que houve influência sócio-cultural na adoção de práticas do sistema plantio direto, pelos produtores rurais do Estado de Mato Grosso.
Resumo:
A quantificação dos componentes do balanço de energia em largas escalas é importante para o gerenciamento racional dos recursos hídricos em bacias hidrográficas com mudanças de uso da terra. Neste trabalho objetivamos analisar esses componentes usando imagens Modis em conjunto com dados climáticos no polo agrícola Norte de Minas Gerais, durante o ano de 2015, com aplicação do algoritmo Safer. Considerando-se toda a área estudada, as partições do saldo de radiação (Rn) para os fluxos de calor latente (λE), sensível (H) e no solo (G) foram, em média, 44%, 51% e 5%, respectivamente. Os destaques foram os municípios de Matias Cardoso e Capitão Eneas, que se apresentaram como o mais úmido e o mais seco, respectivamente, de acordo com suas partições de energia.
Resumo:
Monitoring agricultural crops constitutes a vital task for the general understanding of land use spatio-temporal dynamics. This paper presents an approach for the enhancement of current crop monitoring capabilities on a regional scale, in order to allow for the analysis of environmental and socio-economic drivers and impacts of agricultural land use. This work discusses the advantages and current limitations of using 250m VI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for this purpose, with emphasis in the difficulty of correctly analyzing pixels whose temporal responses are disturbed due to certain sources of interference such as mixed or heterogeneous land cover. It is shown that the influence of noisy or disturbed pixels can be minimized, and a much more consistent and useful result can be attained, if individual agricultural fields are identified and each field's pixels are analyzed in a collective manner. As such, a method is proposed that makes use of image segmentation techniques based on MODIS temporal information in order to identify portions of the study area that agree with actual agricultural field borders. The pixels of each portion or segment are then analyzed individually in order to estimate the reliability of the temporal signal observed and the consequent relevance of any estimation of land use from that data. The proposed method was applied in the state of Mato Grosso, in mid-western Brazil, where extensive ground truth data was available. Experiments were carried out using several supervised classification algorithms as well as different subsets of land cover classes, in order to test the methodology in a comprehensive way. Results show that the proposed method is capable of consistently improving classification results not only in terms of overall accuracy but also qualitatively by allowing a better understanding of the land use patterns detected. It thus provides a practical and straightforward procedure for enhancing crop-mapping capabilities using temporal series of moderate resolution remote sensing data.