970 resultados para microbial biomass C


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil microbial community changes associated to conventional and organic farming of two relevant crops (Beta vulgaris and Solanum lycopersicum) were analysed through 16s rRNA amplicon sequencing. This study revealed microbial communities in the agricultural soils studied to be similar to other reported nutrient-rich microbiomes, and some significant differences between the microbial communities associated to the two farming practices were found. Some phyla (Chloroflexi and Thermi) were found to be present in different abundances according to soil treatment. As chloroplast interference can be a stumbling block in plant-associated 16s rRNA amplicon metagenomics analysis of aerial plant tissues, two protocols for bacterial cell detachment (orbital shaking and ultrasound treatment) and two protocols for microbial biomass recovery (centrifugation and filtration) were tested regarding their efficiency at excluding plant-DNA. An alternative method to the one proposed by Rastogi et al (2010) for evaluating the chloroplast-amplicon content in post-PCR samples was tested, and the method revealed that filtration was the most efficient protocol in minimising chloroplast interference.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

油蒿(Artemisia ordosica Krasch.)是内蒙古鄂尔多斯高原特有的半灌木,构成该地区沙地优势植被类型。主要分布在固定、半固定沙丘,同时在流动沙丘也有少量分布。它在当地经济价值、防风固沙环保方面均处于无以取代的地位。在毛乌素沙地沙漠化日益扩大的严峻态势下,研究其群落地上、地下过程对生境变化的响应不仅对维持干旱、半干旱区生态系统稳定的管理措施上有所帮助,而且也有助于了解全球变化背景下物种对环境条件的长期变化适应策略。 为此,本项研究以毛乌素沙地为研究区域,利用异速生长关系确立不同生境油蒿生物量最佳回归方程,并调查、比较了毛乌素沙地固定沙丘、半固定沙丘和流动沙丘三个生境油蒿灌丛地的生物量、土壤和植被的碳储量、生产力和细根周转、土壤微生物生物量碳、氮和土壤呼吸。具体结果如下: 1. 建立并比较了油蒿枝、株两个水平上各部分(不含细根)生物量异速生长关系式,其中枝形态指标(枝直径BD、枝长BL、叶枝长LBL)与油蒿叶、枝、果各部分生物量的异速关系最好;株水平上冠层面积CA与其叶、枝干、果、粗根各部分生物量的回归效果较好。不同生境生物量与其生长变量的异速生长关系存在差异。2004年调查的油蒿灌丛生物量从固定沙丘、半固定沙丘到流动沙丘分别是354.8,178.3和30.4 g m-2;各部分(叶、枝干、果、粗根、不同径级细根的)生物量都呈递减趋势。地下根与总生物量比值排序为固定>半固定>流动沙丘。不同生境细根生物量垂直分布存在差异,在固定沙丘根可至100 cm,半固定沙丘达90 cm,而在流动沙丘仅为60 cm,这些结果有助于使了解不同生境中的相同物种如何通过自身形态及其生物量调整来适应生境的差异。 2. 不同生境油蒿灌丛地植被碳储量和土壤碳储量在P < 0.05水平上差异显著,其中固定沙丘植被碳储量和土壤碳储量分别为224.04和7521 g C m-2,半固定沙丘是119.27和3029 g C m-2,流动沙丘是16.83和2300 g C m-2。可见沙区土壤有机碳远大于植被碳量。 3. 利用最大值减最小值方法、标准取样法和内生长土芯法研究了不同生境油蒿灌丛地的地上、粗根生产力和地下细根生产力。发现各生境生产力、细根周转都随着植被盖度增加而增加,地下根生产力与总生产力之比随着植被盖度增加而减少;不同生境油蒿灌丛地生产力在P < 0.05水平上存在显著差异,2005年总生产力范围在18.23-293.82 g m-2 yr-1之间;细根总周转率在0.16-0.54 yr-1之间。 4. 利用异速生产关系确立不同生境不同水平上油蒿叶面积的最佳回归关系式并对不同生境的比叶面积(SLA)进行了比较,其中枝水平上各生境叶面积与枝直径、枝叶长、枝长相关关系在P < 0.001水平上显著;株水平上各生境叶面积与株高、冠层面积相关关系在P < 0.001水平显著;从固定沙丘、半固定沙丘到流动沙丘SLA由大变小,这可能与生境养分差异有关。 5. 不同生境油蒿灌丛地土壤微生物碳、氮和土壤呼吸范围分别在117.99-153.99 mg kg-1、1.49-3.31mg kg-1和0.54-1.96 μmol m-2 s-1之间,它们从固定沙丘、半固定沙丘到流动沙丘依次下降。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microorganisms play an important role in removing pollutants from constructed wetlands. We investigated the microbial characteristics in a novel integrated vertical-flow constructed wetland (IVCW), which has been in operation in Wuhan, China since 1998. We used phospholipid fatty acid (PLFA) and amoA gene to analyze the structure and diversity of the microbial community within the IVCW. PLFA results suggested that the amount of bacterial PLFA was significantly higher than that of fungal PLFA, but the total microbial biomass represented by PLFA index was low in the system. Microbial spatial distribution showed significantly higher bacterial (both G(+) and G(-)) and fungal biomass in the surface than in the subsurface layers. The ratios of monounsaturated to branched PLFA demonstrated that an anaerobic layer sandwiched by two aerobic layers existed in the IVCW, consistent with the redox potential results. Analysis of the amoA revealed the presence of Nitrosomonas-like sequences in the surface substrate of the downflow chamber and apparent diversities of ammonia-oxidizing bacteria in the system. These results suggest that microorganisms, despite their relatively low biomass, have inhabited the IVCW, and the results will offer some valuable information on microbe to system designers and managers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

本文对东北地区松辽平原不同纬度农田土壤碳氮磷剖面分布特征进行比较研究,从北到南依次采集了黑土区的海伦、哈尔滨、德惠、公主岭和棕壤区的昌图、沈阳、大石桥玉米地土壤样品。所得主要结论如下: 各样点土壤有机碳含量随土层深度的增加而下降。海伦、哈尔滨和公主岭样点40~60cm土层土壤有机碳含量及其储量显著低于0~40cm土层;海伦、哈尔滨、德惠、公主岭和昌图样点土壤水溶性有机碳表现出随深度增加先升高后降低,在沈阳和大石桥样点土壤水溶性有机碳表现出随深度而下降的趋势;各样点0~20cm土层土壤微生物量碳含量高于20~40cm土层。典型黑土区海伦点0~100cm的SOC储量为213.4t•hm-2, 棕壤区昌图、沈阳、大石桥样点分别为69.9、87.9和73.4t•hm-2,海伦点SOC储量是棕壤区三样点的3倍左右。 土壤全氮、碱解氮、硝态氮及氮储量随剖面深度增加而下降。德惠点在20~40cm土层、沈阳点在40~60cm土层、昌图点在60~80cm土层的全磷含量最低;其他样点土壤全磷、有机磷含量和磷储量总体上呈现随土层深度增加而下降的趋势。黑土区样点土壤有机磷含量在40cm以下各土层迅速下降,而棕壤区各样点20cm以下各土层差异不显著。除公主岭和大石桥点外, 其他各样点土壤Olsen-P含量在0~20cm 土层显著高于20~40cm土层。 土壤有机碳、全氮、碱解氮、全磷和有机磷含量随纬度增加而增加。营养元素在纬度上的分异主要受成土母质、气候条件等自然因素影响,施肥、耕作等人为活动对表层土壤营养元素分布的影响较大。除土壤水溶性有机碳外,土壤碳、氮和磷之间及其与其他基本理化性质间均存在显著的相关关系。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

土壤微生物量、可溶性有机碳与氮虽然只占土壤有机碳、氮总量的较小部分,但可以在土壤全碳、氮变化之前反映土壤微小的变化,又直接参与土壤生物化学转化过程,因而在植被恢复过程中,较其它土壤理化性质等能够更好地指示土壤恢复情况。在青藏高原东缘存在大面积的次生人工林替代灌丛或采伐迹地,而关于这些人工林替代后的生态效果和生态过程的评估却十分缺乏,本研究通过评估岷江上游植被恢复重建过程中典型人工替代次生植被凋落物层与土壤碳、氮等养分大小,动态监测土壤微生物生物量、水溶性碳、氮等指标,结合温度与凋落物输入等影响土壤活性有机碳、氮因子的控制试验,系统分析不同人工替代次生植被土壤碳、氮等养分的差异原因,试图寻找低效人工林优化调控与持续管理技术,为区域生态公益林持续管理提供理论和技术依据。主要结论如下: 1. 通过对不同人工替代次生植被凋落物层和土壤碳、氮分析发现,油松和华山松人工林替代次生灌丛后土壤碳、氮含量较灌丛和阔叶人工林低,主要原因可能为凋落物质量(C/N)较差,而引起碳、氮等元素难以归还土壤。进而通过对不同人工替代次生植被凋落物层和土壤微生物生物量、水溶性有机碳、氮等指标的季节性动态模式的分析,发现各次生植被土壤微生物生物量C、N,P以及土壤水溶性碳、氮含量均呈明显季节性动态,呈现秋季明显大于其它季节,冬季最低,在表层土壤最为明显。 2. 油松、华山松人工林凋落物层和土壤水溶性有机碳(WDOC)、土壤水溶性有机氮(WDON)明显低于灌丛和连香树,土壤微生物生物量C、N也以油松和华山松人工林最低,而落叶类植被,如灌丛、连香树和落叶松之间没有明显差异,说明可利用底物的数量和质量差异是影响各次生植被凋落物分解和土壤微生物活性的主要原因。MBC/OC和MBN/ON能较好地指示土壤微生物活性的变化,MBC/OC凋落层总体以灌丛和连香树人工林最高,油松和华山松人工林最低;而土壤中MBC/OC连香树人工最高,华山松人工林最低。说明以油松和华山松为主的人工造林替代乡土阔叶灌丛造成土壤C、N等养分严重匮乏,微生物活性低下是影响其养分周转的主要原因。 3. 从各次生植被凋落物产生看,凋落物年归还量最大的为华山松人工林(5.1×103 kg ha-1),其次为落叶松人工林(4.8×103 kg ha-1),阔叶灌丛林地凋落物产生总量(4.4×103 kg ha-1)略大于油松人工林(4.2×103 kg ha-1),最小的为连香树人工林(3.6×103 kg ha-1);叶是凋落物的主体,落叶类树种月动态表现为单峰型,高峰主要在10-11月,如落叶松、连香树和灌丛林;常绿的松类月动态不明显,各月基本相同,最为明显地为油松林,华山松人工林略有二个小峰,分别出现在11月和5月。落叶阔叶灌丛的凋落物分解速率大于常绿针叶林,如油松和华山松。结合凋落物的产生量和分解速率,不同树种人工林替代次生阔叶灌丛后,人工油松和华山松林枯落物总贮量和厚度明显大于落叶松人工林、灌丛林和连香树人工林,说明以油松和华山松为主的人工造林替代乡土阔叶灌丛延缓了有机物向土壤的顺利归还,不利于土壤C、N等养分循环。 4. 通过控制地面凋落物和地下根系输入有机物对土壤碳、氮的影响研究发现,(1) 单独去除根系以及根系与地面凋落物同时去除处理1年后对表层(0-10cm)土壤WDOC均没有显著影响,而土壤WDON显著增加,油松人工林土壤微生物生物量C、N显著降低,人工落叶松林没有显著差异,说明油松人工林土壤微生物活性对地下碳输入的依赖大于其它次生植被,而落叶松土壤微生物活性对地下碳输入依赖性较小;去除地面凋落物,明显降低了落叶松人工林土壤WDOC,华山松和连香树土壤WDON均较对照显著减少,油松人工林土壤微生物量C较对照显著减少;双倍增加地面凋落物处理对土壤微生物生物量、WDOC和WDON没有明显地增加,相反,连香树、华山松和油松人工林土壤WDON较对照减少。说明油松人工林微生物活性不仅依赖于地下碳输入,而且对地上有机物输入的依赖性也较大;连香树、落叶松和华山松人工林土壤微生物生物量并没有因地面凋落物的去除减少可能与土壤总有机碳含量及活性均较高有关,而双倍增加地面凋落物反而降低了土壤微生物生物量,说明凋落物覆盖后改变了土壤微气候。 5. 碳矿化累积量与有机碳含量和活性有机碳含量之间存在显著地正相关关系。凋落物碳累积矿化量、矿化速率以连香树最高,油松和华山松人工林次之,落叶阔叶灌丛低于常绿针叶纯林,导致其差异的主要原因可能为凋落物产生的时间动态模式不一样,致使凋落物起始分解时间不一致。而土壤层有机碳矿化速率和矿化量以阔叶落叶灌丛和连香树最高,油松和华山松人工土壤最低,再次证实利用针叶纯林恢复植被阻碍了有机质周转与循环。 6. 凋落物累积矿化量与C/N值呈显著地相关关系,并随着温度的升高而明显增加,而土壤累积矿化量与C/N值没有显著相关关系,说明土壤有机碳质量(C/N)对温度的响应不十分明显。通过双指数模型对不同温度下碳矿化过程进行模拟和计算出活性有机碳与惰性有机碳比例,发现温度升高促进了惰性有机碳向活性有机碳的转化,增加了活性有机碳含量,说明温度升高可促进次生植被凋落物与土壤有机质的分解,进而可影响到林地碳源/汇关系的变化。 综上,通过对不同人工替代次生植被凋落物与土壤C、N大小、以及土壤微生物生物量、水溶性C、N等指标动态变化模式研究,结合温度与凋落物数量输入等影响土壤活性C、N因子的综合分析,以油松和华山松人工纯林对山地植被恢复,延缓或阻碍了有机质周转与循环,造成了土壤肥力退化。对现有低效人工纯林改造,应为地面大量有机物分解创造条件。 Although soil microbial biomass, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are a small part of total soil organic carbon and nitrogen, they can directly participate in the process of soil biochemical translation and indicate the fine changes before changes of soil total organic carbon and nitrogen occur. So, they are good indexes to indicate soil restoration condition during the process of vegetation rehabilitation. There are large areas of secondary vegetations which substitute for indigenous shrubs in the eastern fringe of Qinghai-Tibet Plateau. However, it is not well known that the ecological effect and process after substitution by different secondary plantations. Based on comparison of soil organic and nitrogen contents in litter layer and soil under different secondary vegetations in upper reaches of Minjiang River, soil microbial biomass, DOC and DON in litter layer and soil were investigated in order to analyze the seasonal dynamic. Combining the effects of temperature, litter input and root exclusion on soil microbial biomass, DOC and DON, we also aim to understand the reason and mechanism of difference in soil carbon and nitrogen contents among different secondary vegetations. The study would contribute to comprehensively understanding C and N cycling processes and provide optimal control and sustainable technology of low-effect plantations in these regions. The results are as follows: (1) Organic carbon and nitrogen in litter layers and soil under different substitution plantations were investigated. The results showed that contents of soil organic carbon and nitrogen were lower in P. tabulaeformis (PT) and P. armandi Franch(PA) than those in native broad-leaf shrub and broad-leaf plantation. The low quality (C/N) of litter in PT and PA plantations caused carbon and nitrogen returning to soil difficultly. Seasonal dynamic of soil microbial carbon (MBC),-nitrogen (MBN),-phosphor (MBP), and WDOC and WDON showed similar pattern, which had the highest values in autumn and the lowest values in winter. (2) WDOC and WDON in litter layers and soil under PT and PA plantations were significantly lower than those in native broad-leaf shrub and Cercidiphyllum japonicum Sieb. et Zucc.(CJ). Soil MBC and MBN were also the lowest, while there were no significant differences among deciduous vegetations, i.e. native broad-leaf shrub, CJ and Larix kaempferi Lamb.(LK) plantation. The results suggested that difference in quantity and quality of available substance was main reason that affected the activity of microbe in soil and litter layer. MBC/OC and MBN/ON were good indexes to indicate the change of soil microbial activity. MBC/OC of litter had the highest value under native broad-leaf shrub and CJ plantation, and had the lowest value in PT and PA plantations, while MBC/OC of soil was the highest under CJ plantation, and was the lowest in PT and PA plantations. These results indicated that PT and PA plantations substituting for native broad-leaf shrub caused deficit of carbon and nitrogen in soil, low microbial activity was a main reason influencing the cycling and turnover of carbon and nitrogen in soil. (3) The annual litter fall production, composition, seasonal dynamic and decomposition of five typical secondary stands in upper reaches of Minjiang River were studied in this paper. The annual litter productions were: PA (5.1×103 kg ha-1), LK(4.8×103 kg ha-1), native broad-leaf shrub (4.4×103 kg ha-1), PT(4.2×103 kg ha-1),CJ(3.6×103 kg ha-1). The litter production of leaves in five secondary vegetations occupied a higher percentage in the annual total litter production than those of other components. The litterfall was mostly producted in the cool and dry period (October-November) for deciduous vegetations and relatively equably producted in every season for evergreen coniferous vegetations. The decomposition rate of leaf litter in the broad-leaf stand was higher than those in evergreen coniferous stand. Combined with annual litter fall production and decomposition rate of leaf litter, we found that stock and depth of litter layer were significantly larger in PT and PA plantations than those in native broad-leaf shrub, LK and CJ plantations. The results confirmed that PT and PA plantations substituting for native broad-leaf shrub delayed organic matter returning to soil and hindered cycling of carbon and nitrogen again. (4) We explored plant litter removal, double litter addition, root trenching, and combining root trenching and litter removal treatments to examine the effects of above- and belowground carbon inputs on soil microbial biomass, WDOC and WDON in four secondary plantations. During the experimental period from June 2007 to July 2008, 1 year after initiation of the treatments, WDOC in soil did not vary in root trenching, and combining root trenching and litter removal treatments, while WDON in soil significantly increased compared with CK treatment. Root trenching reduced soil MBC and MBN in PT plantation, while MBC and MBN in soil did not vary in LK plantation. The rasults implied that soil microbial activity was more dependent on belowground carbon input in PT plantation than those in other secondary plantations, on the contrary, soil microbial activity in LK plantation was not dependent on belowground carbon input. Plant litter removal significantly decreased soil WDOC in LK plantation, decreased WDON in PA and CJ plantations, and also significantly reduced soil MBC in PT plantation. However, double litter addition did not increase soil microbial biomass, WDOC and WDON, on the contrary, soil WDON in CJ, PA and PT plantations were decreased. These suggested that soil microbial activity was not only dependent on belowground carbon input, but also on aboveground organic material input. Double litter addition could change the microclimate and result in the decrease of soil microbial activity in CJ, PA and PT plantations. (5) We measured carbon mineralization in a 107 days incubation experiment in 5℃,15℃ and 25℃. Carbon cumulative mineralization was positively correlated with organic matter and labile organic carbon in litter layer and soil. Cumulative carbon mineralization and mineralization rate of litter layers in PT and PA plantations were higher than that in native broad-leaf shrub. This difference between native broad-leaf shrub and coniferous plantations in cumulative carbon mineralization and mineralization rate of litter layers could be attributed to the initiating time of decomposition due to the difference in seasonal dynamic of litter fall production between two types of secondary plantations. However, cumulative carbon mineralization and mineralization rate in soil were the highest in native broad-leaf shrub and CJ plantation, and were the lowest in PT and PA plantations. This also confirmed that PT and PA plantations substituting for native broad-leaf shrub hindered the cycling and turnover of organic matter again. (6) Carbon cumulative mineralization was positively correlated with C/N in litter layer and increased with temperature increasing, while carbon cumulative mineralization was not correlated with C/N in soil. This indicated that soil organic matter quality (C/N) was insensitive to temperature. Applying bi-exponential model, we computed the percent of labile and stable carbon in different temperature incubation and found that temperature increasing would accelerate the transform from stable carbon to labile carbon and increase the percentage of labile organic carbon. This illuminated that temperature incraesing could facilitate the decomposition of litter and soil organic matter in secondary vegetations and hence affect the relationship between carbon source and sink.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

岷江上游干旱河谷区水土流失强烈,地质灾害频繁,生态环境十分脆弱,而土壤条件恶劣(水分不足和养分缺乏)是阻碍该区植被恢复的关键因子,因此研究水分和乡土灌木生长对土壤的影响对该区的生态恢复具有指导意义。本文通过定点模拟实验,选取三种优势豆科灌木为研究对象,分别是白刺花(Sophora davidii)、小马鞍羊蹄甲(Bauhinia faberi var. microphylla)和小雀花(Campylotropics polyantha),设置5 个水分梯度,分别为100%、80%、60%、40%和20%田间持水量(FC),对栽种植物与不种植物下土壤理化性质和酶活性进行测定分析,系统比较和研究了不同水分条件和不同乡土灌木生长对干旱河谷区土壤结构、养分循环、酶活性以及微生物量的影响。主要结果如下:1. 无论生长植物与否,土壤的毛管持水量和毛管孔隙度都随着水分含量的减少而降低,最大持水量、总孔隙度和容重变化不大,相应地,土壤中的非毛管孔隙随含水量的减少而升高。各水分条件下,种植植物的毛管持水量和毛管孔隙度低于无植物生长的土壤,非毛管孔隙度相应地高于无植物土壤。土壤含水量在100%-40% FC 时,三种豆科灌木的毛管持水量和毛管孔隙度存在差异,而20% FC 条件下,三种豆科灌木土壤的物理性质基本相同。2. 水分胁迫影响土壤中养分的矿化和积累,主要表现在降低了水溶性碳和铵态氮的含量,中等程度胁迫时(60% FC)促进了有机碳和硝态氮的富集,对速效钾和有效磷没有明显作用。种植豆科灌木后各水分梯度上都增加了有机碳、铵态氮、速效钾和有效磷的积累。增加程度上三种豆科灌木间有一定差异,对于土壤有机碳总量,种植白刺花和小马鞍羊蹄甲明显高于小雀花,同样的情况还出现在铵态氮和速效钾上,但是对于有效磷,种植小雀花后的增加程度则明显高于白刺花和小马鞍羊蹄甲。种植豆科灌木不仅增加了土壤养分的相对含量,也改变了其在水分梯度上的变化趋势及其变化幅度,这种作用主要体现在碳元素和氮元素上。3. 无植物生长时脲酶活性随水分含量的减少而升高,水分胁迫对磷酸酶和过氧化氢酶的作用不显著,蔗糖酶也保持在相对较高的水平。种植植物后,蔗糖酶、磷酸酶活性与无植物时相比有较大幅度的提高,种植白刺花的脲酶活性也升高,其升高的程度在不同水分含量时不同。种植植物还降低了酶活性在水分梯度上的变幅,使之在水分梯度间的差异显著性降低。脲酶活性在指示土壤性质改变方面是较敏感的指标,其它三种酶在不同植物间的差异不明显。4. 在无植物生长时,中等程度的水分胁迫(60% FC)提高了土壤微生物量碳含量,过高或过低的土壤水分均不利于微生物碳的积累。种植小马鞍羊蹄甲后微生物量碳在水分梯度上的变化趋势与无植物生长时一致,而种植白刺花和小雀花后微生物量碳随着水分含量的减少而降低。不同种类植物的微生物量碳在水分梯度上的变化特征也不同,100% FC 条件下三种植物间没有差异,80%和60% FC 条件下小马鞍羊蹄甲显著高于白刺花和小雀花,40%和20% FC 条件下白刺花和小马鞍羊蹄甲也显著高于小雀花,说明不同种类植物随着干旱胁迫程度的加深微生物量碳的降低幅度不同,在极度干旱时,白刺花和小马鞍羊蹄甲土壤依然保持了较高的微生物活性,而小雀花土壤微生物量则明显下降。The dry valley of the upper reaches of the Minjiang River is seriously degradedmountain ecosystem. It was endangered by extremely soil lost and frequentlygeological disaster. Previous studies showed that short of water and nutrients in soilwas the principal limiting factors of vegetation restoration in this area. The typical soiland three dominant leguminous shrubs Sophora davidii, Bauhinia faberi var.microphylla and Campylotropics polyantha in upper reaches of arid Minjiang Rivervalley were considered as experimental material. Two-month old seedlings of eachspecies were exposed to five water supplies (100%, 80%, 60%, 40% and 20% waterfield capacity (FC)) in a temperature and light-controlled greenhouse. Afterthree-month water treatment, soil physiochemical variables and soil microbialactivities were determined by conventional methods. The main results showed that:1. Soil capillary capacity and capillary porosity decreased along water supplyregimes in all treatments, while saturated water capacity, total porosity and bulkdensity kept in a relatively stable level, as a result, the non-capillary porosity andcapacity increased with decrease of water supply. Compared to non-planted soil, theplant-soil systems had a higher non-capillary porosity and capacity, suggestingappropriate oxygen was present in soil to maintain the living of microorganism. Soilof three type shrub species shared the same capillary capacity and capillary porosityunder 20% FC.2. Water soluble carbon and NH4+-N decreased in response to water stress, whiletotal organic carbon and NO3--N promoted by moderate water stress and inhibited by 100% and 20% FC. Total organic carbon, NH4+-N, rapidly available K and availableP increased after the planting of leguminous shrubs in five water supply regimescompared to non-planted soil. For TOC, NH4+-N and rapidly available K, thepromotion effect was higher in S. davidii and B. faberi var. microphylla than C.polyantha planted soil, while available P displayed the opposite side. The planting ofshrubs also reduced the variance of observed traits along water supply gradients.3. Drought stress increased urease activity in non-planted soil, while insignificantdifferences were observed in phosphatase and catalase activity among five watersupply regimes. The planting of leguminous shrubs facilitated the β-glucosidase andphosphatase activity compared to the non-planted soil. It also reduced the variance ofenzyme activity along water supply gradients. Urease was more sensitive to waterstress than other three enzymes.4. Soil water content significantly affected microbial biomass carbon andCmic:Corg. S. davidii and B. faberi var. microphylla showed more drought toleranceability than C. polyantha, attributing not only to their relatively smaller variance ofmicrobial biomass carbon along soil water supply gradients, but also to the highlevel of microbial activity under severe water stress. S. davidii and B. faberi var.microphylla benefited reproduction of soil microorganism at 60%-80% FC, whilesevere drought limited it due to the competition of water and nutrients between plantand soil microorganism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

川西北高寒草甸位于青藏高原东部地区,是我国四大牧区之一,也是长江和黄河等江河源区的重要水源涵养功能区。近几十年来,大量牦牛粪便被牧民作为生物能源、肥料或者食用菌产业的原料而利用,为草原生态系统的养分平衡增加了生态风险。鉴于在青藏高原地区针对牦牛粪便的相关研究尚未见报道,本文从粪便和土壤养分相互变化趋势的角度出发,研究了粪便在夏秋两季的分解状况和粪便其下及其周围土壤的养分变化。通过此研究,将有助于了解牦牛粪便在自然状态下的分解速率以及粪便对土壤养分及土壤微生物生物量的影响,为粪便对草地土壤生态系统的贡献提供概念性认识,同时也为高寒草甸草地这种脆弱生态系统的可持续管理提供理论依据。 针对牦牛粪便自身养分释放及其对土壤在时间和空间尺度上的影响,本文通过模拟牛粪堆积,在不同时间和固定区域内对牛粪和土壤进行了夏秋两季的采样测定,分析了牛粪及土壤NO3--N、NH4+-N、速效K、无机P、有机C、全N 和全P 含量随时间的变化趋势。得到如下结果: 1. 在研究区域内,牛粪对草地生态系统具有较强的养分(N、P)贡献能力。据初步统计,其估值大致为氮素699~932 kg ha-1,P 素为110~147 kg ha-1。牛粪(湿重、干重)在夏秋季节的分解速率具有较大差异,夏季显著快于秋季。夏季牛粪湿重、干重在2 个月左右之后分别降为初期的14%和24%,而秋季同期分别降为35%和52%。牛粪养分(NO3--N、NH4+-N、速效K、无机P、有机C、全N 和全P)的分解速率在夏季也要显著快于秋季。秋季经过2 个月左右的分解之后,牛粪以上含量分别降至初始态的32%、60%、36%、64%、58%、63%和43%,远高于夏季的同期水平。 2. 在不同季节,牛粪周围的土壤养分(NO3--N、NH4+-N、速效K 和无机P)含量变化随时间改变呈现相同的趋势。但是,牛粪周围不同远近下土壤养分随时间的动态变化幅度略有不同。粪下土壤养分含量随时间变化波动较大,距粪便越远,随时间变化的变幅越为平缓。总体来说,在夏季由于粪便分解较快,对土壤养分的持续作用时间不及秋季,秋季粪便分解变慢,表现出养分的缓释特征。其次,牛粪对粪下土壤影响的持续时间也长于对周围土壤的作用时间。 3. 粪便对土壤养分(NO3--N、NH4+-N、速效K、无机P)影响的范围在不同季节具有差异。夏季要高于秋季,但对周围土壤养分影响的持续时间低于秋季。在夏季短期内,牛粪对土壤NO3--N 和速效K 含量的影响范围能够超过30cm,而对NH4+-N 和无机P 的影响范围则介于10cm 和30cm 之间。在2 个月左右之后,牛粪对周围土壤养分的影响能力基本消失。在秋季,牛粪对周围土壤养分影响范围难以达到30cm 处。粪便在夏季对其下土壤和周围土壤的有机C、全N 和全P 含量并无显著影响,但在秋季能显著增加其下土壤有机C、全N 和全P 含量。 4. 牛粪在秋季对土壤SMB-C、SMB-N 和SMB-P 含量的影响能够持续2 个月以上,由于秋冬季节牛粪分解缓慢,因此推断这种效应持续时间至少能够1 年左右。另一方面,牛粪在秋季对土壤SMB-C、SMB-N 和SMB-P 含量的影响范围主要集中在其下土壤,而周围的影响效应并不明显。 The grassland on the eastern fringe of Qinghai-Tibetan Plateau was one of the four greatest pasture zones in our country and the main water conservation function zones in the hesastream of Yangtse River and Huanghe river. Rencent years, lots of dung in this area was used as biological energy, fertilizer or material of fungoid growing, leading to high risk of nutrient banlance in grassland ecosystem. In view of the researches on the impact of yak dung in this area are relatively rare, the present study focused on the relationship of dung and soil nutrient transformation in sunmer and autumn, which could profoundly illuminate the mechanism of dung decomposition and the effect of dung on soil chemical properties and soil microbe biomass. The present study also contributed to a basic understand and provided scientific management in the high-frigid ecosystem. Decomposition of yak dung and its effect on soil chemical properties in eastern grassland of Qinghai-Tibetan Plateau were determined. The study simulated the real dung pats, took dung and soil samples at different time and fixed-point in summer and autumn. The samples were analysed for NO3--N, NH4+-N, available K, inorganic P, total organic C (TOC), total N (TN), total P (TP). It was concluded that: 1. In study area, the yak dung supplied to ecosystem substantial nutrient. It is estimated that the N contribution of dung was approximately 699~932 kg ha-1, P contribution was approximately 110~147 kg ha-1. The rate of yak decomposition was more rapid in summer than autumn, the wet and dry weight of yak decreased to 14% and 24% respectively after 2 months when dung excreted in summer, with 35% and 52% in autumn. The content of NO3--N、NH4+-N、available K、inorganic P、TOC、TN and TP in dung decomposed more rapid in summer too. After 2 months when dung excreted in autumn, the content of above nutrient decreased to 32%、60%、36%、64%、58%、63% and 43% respectively,which were significantly higher than summer. 2. The content of NO3--N、NH4+-N、available K and inorganic P in soil around dung had the same transformation trend in each season, whereas it was distinguishing at different gradient of distance from dung, the nutrient in soil below dung had the most significant change while the more far from dung, the less change in soil. It was concluded that the yak dung had prolong impacts on soil in autumn compared with summer, besides, it aslo showed that the yak dung had protract effect on soil below dung compared with soil around dung. 3. The yak dung had expansive impact on soil around dung in summer whereas had relatively short effect compared with autumn. In short-term at summer, there was a significant increase about the content of NO3--N and available K around 30cm radius from dung pat while the content of NH4+-N and inorganic P between 10cm to 30cm. After 2 months, the impact almost disappeared. In autumn, the effect was hard to reach 30cm. The yak dung had no significant effects on the content of TOC、TN and TP in soil below or around dung in summer whereas there was a obvious increase in soil below dung pat in autumn. 4. The duration of effect of yak dung on soil microbial biomass(SMB) C、N and P was at least 2 months, maybe even more than 1 year. On the other hand, the impact of dung on SMB-C、SMB-N and SMB-P mainly acted on soil below dung while no obious effect on soil around dung.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

为阐明黄土高原典型土壤全氮和微生物氮含量随土壤类型、土层和土地利用方式变化规律,研究了从北向南依次分布的干润砂质新成土(神木)、黄土正常新成土(延安)和土垫旱耕人为土(杨陵)等典型土壤的全氮和微生物氮含量的变化特征。结果表明,不同土壤类型、不同土层全氮和微生物氮含量存在显著差异。从南到北,全氮和微生物氮含量显著下降(P<0.05)。对同一土壤类型,全氮和微生物氮含量在0—60 cm随土层深度增加下降很明显,60—120 cm有轻微下降,120 cm以下低而稳定。微生物氮含量随土壤类型的变化趋势与全氮完全相同,其与土壤全氮、有机碳及微生物碳含量均存在极显著正相关关系(P<0.01)。土壤微生物氮与全氮比值变化在0.42%9~.44%之间。虽然土地利用对土壤全氮和C/N比影响不显著,但却显著影响微生物氮含量和微生物氮与全氮的比值;与农田土壤相比,草地土壤微生物氮含量和微生物氮与全氮比值均明显增加。这一结果说明微生物氮含量和微生物氮与全氮比值更能有效、快速地反映土壤质量的变化。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

以阐明黄土高原典型区域土壤有机碳(SOC)含量和储量及微生物碳(Mc)含量随土壤类型、土层和土地利用方式变异规律为目的,研究了从北向南依次分布的干润砂质新成土(神木)、黄土正常新成土(延安)和土垫旱耕人为土(杨凌)等典型土壤的SOC含量和储量及Mc含量的变化特征。结果表明,不同土壤类型、不同土层SOC和Mc含量存在显著差异。同一土壤类型SOC和Mc含量在0~60cm随土层深度增加下降很明显,60~120cm土层有轻微下降,120cm土层以下低而稳定,同层次土壤从南到北,SOC、Mc和SOC储量含量显著下降,均以土垫旱耕人为土最高,黄土正常新成土次之,干润砂质新成土最低,且差异显著(P<0.05);0~200cm土层SOC总储量也沿土垫旱耕人为土(102.23±30.12t/hm2)、黄土正常新成土(67.78±9.23t/hm2)、干润砂质新成土(27.07±4.59t/hm2)依次下降;土垫旱耕人为土、黄土正常新成土和干润砂质新成土在100~200cm土层SOC累积量分别是0~100cm土层的65%、74%和58%,因此在研究黄土高原SOC贮量时必需考虑深层贮量的贡献。Mc随土壤类型的变化趋势与SOC基本相...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

通过田间小区试验研究了不同N、P施肥量对玉米生育期土壤微生物量C、N、P的影响。结果表明,不同N、P施肥量对微生物量C无明显影响;施N肥量高(225km/hm~2)时降低微生物量N;当施P肥达225 km/hm~2时则对微生物量P产生明显的抑制作用。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To determine the effects of pretreatment on hydrogen production and the hydrogen-producing microbial community, we treated the sludge from the intertidal zone of a bathing beach in Tianjin with four different pretreatment methods, including acid treatment, heat-shock, base treatment as well as freezing and thawing. The results showed that acid pretreatment significantly promoted the hydrogen production by sludge and provided the highest efficiency of hydrogen production among the four methods. The efficiency of the hydrogen production of the acid-pretreated sludge was 0.86 +/- 0.07 mol H-2/mol glucose (mean +/- S.E.), whereas that of the sludge treated with heat-shock, freezing and thawing, base method and control was 0.41 +/- 0.03 mol H-2/mol glucose, 0.17 +/- 0.01 mol H-2/mol glucose, 0.11 +/- 0.01 mol H-2/mol glucose and 0.20 +/- 0.04 mol H-2/mol glucose, respectively. The result of denaturing gradient gel electrophoresis (DGGE) showed that pretreatment methods altered the composition of the microbial community that accounts for hydrogen production. Acid and heat pretreatments were favorable to enrich the dominant hydrogen-producing bacterium, i.e. Clostridium sp., Enterococcus sp. and Bacillus sp., However, besides hydrogen-producing bacteria, much non-hydrogen-producing Lactobacillus sp. was also found in the sludge pretreated with base, freezing and thawing methods. Therefore, based on our results, we concluded that, among the four pretreatment methods using acid, heat-shock, base or freezing and thawing, acid pretreatment was the most effective method for promoting hydrogen production of microbial community. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An impedimetric immunosensor was fabricated for rapid and non-labeled detection of sulfate-reducing bacteria, Desulforibrio caledoiensis (SRB) by immobilizing lectin-Concanavalin A using an agglutination assay. The immobilization of lectin was conducted using amine coupling on the surface of a gold (Au) electrode assembled with 11-Mercaptounclecanoic acid. Electrochemical impedance spectroscopy (EIS) was used to verify the stepwise assembly of the sensor system. The work conditions of the impedimetric immunosensor, such as pH of the buffer solutions and the incubation time of lectin, were optimized. Faradic impedance spectra for charge transfer for the redox probe Fe(CN)(6)(3-/4-) were measured to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (RI) increased with increasing SRB concentration. A linear relationship between R-ct and SRB concentration was obtained in SRB concentration range of 1.8 to 1.8 x 10(7) cfu/ml. The variation of the SRB population during the growth process was also monitored using the impedimetric immunosensor. This approach has great potential for simple, low-cost. and time-saving monitoring of microbial populations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dentre os metodos mais utilizados para determinacao do carbono da biomassa microbiana destacam-se: os de cloroformio-fumigacao-incubacao (CFI) e cloroformio-fumigacao-extracao (CFE). Trabalhos relatados na literatura tem comparado a eficiencia desses metodos em diversos locais. No entanto, para a regiao do cerrado nao existem informacoes a esse respeito. O objetivo deste trabalho foi avaliar a eficiencia dos metodos CFE e CFI na determinacao do carbono da biomassa microbiana do solo (CBMS) em areas de cerrado sob cultura anual (rotacao soja-milho) e pastagem consorciada (Andropogon gayanus e Stylosanthes guianensis) e sob tres fitofisionomias - Mata de Galeria, Campo Sujo e Cerradao. Amostras de solo coletadas em duas profundidades, 0 a 5 cm e 5 a 20 cm, foram analisadas em quatro epocas: agosto de 1998, janeiro a agosto de 1999 e janeiro de 2000. Nas areas cultivadas, os resultados obtidos com os metodos CFE e CFI foram semelhantes independentemente dos tratamentos e das epocas amostradas; as pastagens consorciadas apresentaram maiores teores de CBMS do que as areas sob culturas anuais. A integracao profundidades x metodos foi significatica. Nao houve diferencas entre a profundidade 0 a 5 cm quando se utilizou o metodo CFI, mas as diferencas obtidas com o metodo CFE foram significativas. Os metodos CFI e CFE apresentaram as mesmas tendencias nas areas ativas, independentemente dos tratamentos, profundidades ou epocas analisados; a Mata de Galeria apresentou niveis de CBMS superiores aos do Cerradao e do Campo Sujo. As interacoes profundidades x metodos e epocas x metodos foram significativas devido ao fato de que as diferencas nos teores do carbono da bimassa microbiana, nas profundidades e epocas amostradas, foram mais acentuadas com o metodo CFE. Os resultados indicaram que os metodos CFI e CFE foram apropriados para determinacao da CBMS em solos de Cerrado sob cultivo e sob vegetacao nativa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

David Johnson, Colin D. Campbell, John A. Lee, Terry V. Callaghan and Dylan Gwynn-Jones (2002). Arctic microorganisms respond more to elevated UV-B radiation than CO2. Nature, 416 (6876) pp.82-83 Sponsorship: NERC / EU / Swedish Academy of Sciences RAE2008