899 resultados para microarray profiling
Resumo:
Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.
Resumo:
This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.
Resumo:
Dissertação para obtenção do Grau de Doutor em Biologia
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
O sector do turismo é uma área francamente em crescimento em Portugal e que tem desenvolvido a sua divulgação e estratégia de marketing. Contudo, apenas se prende com indicadores de desempenho e de oferta instalada (número de quartos, hotéis, voos, estadias), deixando os indicadores estatísticos em segundo plano. De acordo com o “ Travel & tourism Competitiveness Report 2013”, do World Economic Forum, classifica Portugal em 72º lugar no que respeita à qualidade e cobertura da informação estatística, disponível para o sector do Turismo. Refira-se que Espanha ocupa o 3º lugar. Uma estratégia de mercado, sem base analítica, que sustente um quadro de orientações específico e objetivo, com relevante conhecimento dos mercados alvo, dificilmente é compreensível ou até mesmo materializável. A implementação de uma estrutura de Business Intelligence que permita a realização de um levantamento e tratamento de dados que possibilite relacionar e sustentar os resultados obtidos no sector do turismo revela-se fundamental e crucial, para que sejam criadas estratégias de mercado. Essas estratégias são realizadas a partir da informação dos turistas que nos visitam, e dos potenciais turistas, para que possam ser cativados no futuro. A análise das características e dos padrões comportamentais dos turistas permite definir perfis distintos e assim detetar as tendências de mercado, de forma a promover a oferta dos produtos e serviços mais adequados. O conhecimento obtido permite, por um lado criar e disponibilizar os produtos mais atrativos para oferecer aos turistas e por outro informá-los, de uma forma direcionada, da existência desses produtos. Assim, a associação de uma recomendação personalizada que, com base no conhecimento de perfis do turista proceda ao aconselhamento dos melhores produtos, revela-se como uma ferramenta essencial na captação e expansão de mercado.
Resumo:
Behçet's disease (BD) is a complex disease with genetic and environmental risk factors implicated in its etiology; however, its pathophysiology is poorly understood. To decipher BD's genetic underpinnings, we combined gene expression profiling with pathway analysis and association studies. We compared the gene expression profiles in peripheral blood mononuclear cells (PBMCs) of 15 patients and 14 matched controls using Affymetrix microarrays and found that the neuregulin signaling pathway was over-represented among the differentially expressed genes. The Epiregulin (EREG), Amphiregulin (AREG), and Neuregulin-1 (NRG1) genes of this pathway stand out as they are also among the top differentially expressed genes. Twelve haplotype tagging SNPs at the EREG-AREG locus and 15 SNPs in NRG1 found associated in at least one published BD genome-wide association study were tested for association with BD in a dataset of 976 Iranian patients and 839 controls. We found a novel association with BD for the rs6845297 SNP located downstream of EREG, and replicated three associations at NRG1 (rs4489285, rs383632, and rs1462891). Multifactor dimensionality reduction analysis indicated the existence of epistatic interactions between EREG and NRG1 variants. EREG-AREG and NRG1, which are members of the epidermal growth factor (EGF) family, seem to modulate BD susceptibility through main effects and gene–gene interactions. These association findings support a role for the EGF/ErbB signaling pathway inBD pathogenesis that warrants further investigation and highlight the importance of combining genetic and genomic approaches to dissect the genetic architecture of complex diseases.
Resumo:
Introduction. This study aims to compare the molecular gene expression during ischemia reperfusion injury. Several surgical times were considered: in the beginning of the harvesting (T0), at the end of the cold ischemia period (T1), and after reperfusion (T2) and compared with graft dysfunction after liver transplant (OLT). Methods. We studied 54 patients undergoing OLT. Clinical, laboratory data, and histologic data (Suzuki classification) as well as the Survival Outcomes Following Liver Transplantation (SOFT) score were used and compared with the molecular gene expression of the following genes: Interleukin (IL)-1b, IL-6, tumor necrosis factor-a, perforin, E-selectin (SELE), Fas-ligand, granzyme B, heme oxygenase-1, and nitric oxide synthetase. Results. Fifteen patients presented with graft dysfunction according to SOFT criteria. No relevant data were obtained by comparing the variables graft dysfunction and histologic variables. We observed a statistically significant relation between SELE at T0 (P ¼ .013) and IL-1b at T0 (P ¼ .028) and early graft dysfunction. Conclusions. We conclude that several genetically determined proinflammatory expressions may play a critical role in the development of graft dysfunction after OLT.
Resumo:
Dissertação para obtenção do Grau de Doutor em Bioengenharia (MIT-Portugal)
Resumo:
The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto
Resumo:
DNA microarrays are one of the most used technologies for gene expression measurement. However, there are several distinct microarray platforms, from different manufacturers, each with its own measurement protocol, resulting in data that can hardly be compared or directly integrated. Data integration from multiple sources aims to improve the assertiveness of statistical tests, reducing the data dimensionality problem. The integration of heterogeneous DNA microarray platforms comprehends a set of tasks that range from the re-annotation of the features used on gene expression, to data normalization and batch effect elimination. In this work, a complete methodology for gene expression data integration and application is proposed, which comprehends a transcript-based re-annotation process and several methods for batch effect attenuation. The integrated data will be used to select the best feature set and learning algorithm for a brain tumor classification case study. The integration will consider data from heterogeneous Agilent and Affymetrix platforms, collected from public gene expression databases, such as The Cancer Genome Atlas and Gene Expression Omnibus.
Resumo:
The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.
Resumo:
The RP protein (RPP) array approach immobilizes minute amounts of cell lysates or tissue protein extracts as distinct microspots on NC-coated slide. Subsequent detection with specific antibodies allows multiplexed quantification of proteins and their modifications at a scale that is beyond what traditional techniques can achieve. Cellular functions are the result of the coordinated action of signaling proteins assembled in macromolecular complexes. These signaling complexes are highly dynamic structures that change their composition with time and space to adapt to cell environment. Their comprehensive analysis requires until now relatively large amounts of cells (>5 x 10(7)) due to their low abundance and breakdown during isolation procedure. In this study, we combined small scale affinity capture of the T-cell receptor (TCR) and RPP arrays to follow TCR signaling complex assembly in human ex vivo isolated CD4 T-cells. Using this strategy, we report specific recruitment of signaling components to the TCR complex upon T-cell activation in as few as 0.5 million of cells. Second- to fourth-order TCR interacting proteins were accurately quantified, making this strategy specially well-suited to the analysis of membrane-associated signaling complexes in limited amounts of cells or tissues, e.g., ex vivo isolated cells or clinical specimens.
Resumo:
BACKGROUND AND OBJECTIVES: The determination of the carbon isotope ratio in androgen metabolites has been previously shown to be a reliable, direct method to detect testosterone misuse in the context of antidoping testing. Here, the variability in the 13C/12C ratios in urinary steroids in a widely heterogeneous cohort of professional soccer players residing in different countries (Argentina, Italy, Japan, South Africa, Switzerland and Uganda) is examined. METHODS: Carbon isotope ratios of selected androgens in urine specimens were determined using gas chromatography/combustion/isotope ratio mass spectrometry (GC-C-IRMS). RESULTS: Urinary steroids in Italian and Swiss populations were found to be enriched in 13C relative to other groups, reflecting higher consumption of C3 plants in these two countries. Importantly, detection criteria based on the difference in the carbon isotope ratio of androsterone and pregnanediol for each population were found to be well below the established threshold value for positive cases. CONCLUSIONS: The results obtained with the tested diet groups highlight the importance of adapting the criteria if one wishes to increase the sensitivity of exogenous testosterone detection. In addition, confirmatory tests might be rendered more efficient by combining isotope ratio mass spectrometry with refined interpretation criteria for positivity and subject-based profiling of steroids.
Resumo:
The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5' and 3' transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) elite controllers maintain undetectable levels of viral replication in the absence of antiretroviral therapy (ART), but their underlying immunological and virological characteristics may vary. Here, we used a whole-genome transcriptional profiling approach to characterize gene expression signatures of CD4 T cells from an unselected cohort of elite controllers. The transcriptional profiles for the majority of elite controllers were similar to those of ART-treated patients but different from those of HIV-1-negative persons. Yet, a smaller proportion of elite controllers showed an alternative gene expression pattern that was indistinguishable from that of HIV-1-negative persons but different from that of highly active antiretroviral therapy (HAART)-treated individuals. Elite controllers with the latter gene expression signature had significantly higher CD4 T cell counts and lower levels of HIV-1-specific CD8(+) T cell responses but did not significantly differ from other elite controllers in terms of HLA class I alleles, HIV-1 viral loads determined by ultrasensitive single-copy PCR assays, or chemokine receptor polymorphisms. Thus, these data identify a specific subgroup of elite controllers whose immunological and gene expression characteristics approximate those of HIV-1-negative persons.