937 resultados para mammary tumorigenesis
Resumo:
Mouse mammary tumor virus has developed strategies to exploit the immune response. It requires vigorous immune stimulation to achieve efficient infection. The infected antigen-presenting cells present a viral superantigen on the cell surface which stimulates strong CD4-mediated T-cell help but CD8 T-cell responses are undetectable. Despite the high frequency of superantigen-reactive T cells, the superantigen-induced immune response is comparable to classical antigen responses in terms of T-cell priming, T-cell-B-cell collaboration as well as follicular and extra-follicular B-cell differentiation. Induction of systemic anergy is observed, similar to classical antigen responses where antigen is administered systemically but does not influence the role of the superantigen-reactive T cells in the maintenance of the chronic germinal center reaction. So far we have been unable to detect a cytotoxic T-cell response to mouse mammary tumor virus peptide antigens or to the superantigen. This might yet represent another step in the viral infection strategy.
Resumo:
Background: Alterations in lipid metabolism occur when animals are exposed to different feeding systems. In the last few decades, the characterisation of genes involved in fat metabolism and technological advances have enabled the study of the effect of diet on the milk fatty acid (FA) profile in the mammary gland and aided in the elucidation of the mechanisms of the response to diet. The aim of this study was to evaluate the effect of different forage diets (grazing vs. hay) near the time of ewe parturition on the relationship between the fatty acid profile and gene expression in the mammary gland of the Churra Tensina sheep breed. Results: In this study, the forage type affected the C18:2 cis-9 trans-11 (CLA) and long-chain saturated fatty acid (LCFA) content, with higher percentages during grazing than during hay feeding. This may suggest that these FAs act as regulatory factors for the transcriptional control of the carnitine palmitoyltransferase 1B (CPT1B) gene, which was more highly expressed in the grazing group (GRE). The most highly expressed gene in the mammary gland at the fifth week of lactation is CAAT/ enhancer- binding protein beta (CEBPB), possibly due to its role in milk fat synthesis in the mammary gland. More stable housekeeping genes in the ovine mammary gland that would be appropriate for use in gene expression studies were ribosomal protein L19 (RPL19) and glyceraldehyde- 3- phosphate dehydrogenase (GAPDH). Conclusions: Small changes in diet, such as the forage preservation (grazing vs. hay), can affect the milk fatty acid profile and the expression of the CPT1B gene, which is associated with the oxidation of fatty acids. When compared to hay fed indoors, grazing fresh low mountain pastures stimulates the milk content of CLA and LCFA via mammary uptake. In this sense, LCFA in milk may be acting as a regulatory factor for transcriptional control of the CPT1B gene, which was more highly expressed in the grazing group.
Resumo:
Chemoprevention is a pragmatic approach to reduce the risk of colorectal cancer, one of the leading causes of cancerrelated death in western countries. In this regard, maslinic acid (MA), a pentacyclic triterpene extracted from wax-like coatings of olives, is known to inhibit proliferation and induce apoptosis in colon cancer cell lines without affecting normal intestinal cells. The present study evaluated the chemopreventive efficacy and associated mechanisms of maslinic acid treatment on spontaneous intestinal tumorigenesis in ApcMin/+ mice. Twenty-two mice were randomized into 2 groups: control group and MA group, fed with a maslinic acid-supplemented diet for six weeks. MA treatment reduced total intestinal polyp formation by 45% (P,0.01). Putative molecular mechanisms associated with suppressing intestinal polyposis in ApcMin/+ mice were investigated by comparing microarray expression profiles of MA-treated and control mice and by analyzing the serum metabolic profile using NMR techniques. The different expression phenotype induced by MA suggested that it exerts its chemopreventive action mainly by inhibiting cell-survival signaling and inflammation. These changes eventually induce G1-phase cell cycle arrest and apoptosis. Moreover, the metabolic changes induced by MA treatment were associated with a protective profile against intestinal tumorigenesis. These results show the efficacy and underlying mechanisms of MA against intestinal tumor development in the ApcMin/+ mice model, suggesting its chemopreventive potential against colorectal cancer.
Resumo:
Chemoprevention is a pragmatic approach to reduce the risk of colorectal cancer, one of the leading causes of cancerrelated death in western countries. In this regard, maslinic acid (MA), a pentacyclic triterpene extracted from wax-like coatings of olives, is known to inhibit proliferation and induce apoptosis in colon cancer cell lines without affecting normal intestinal cells. The present study evaluated the chemopreventive efficacy and associated mechanisms of maslinic acid treatment on spontaneous intestinal tumorigenesis in ApcMin/+ mice. Twenty-two mice were randomized into 2 groups: control group and MA group, fed with a maslinic acid-supplemented diet for six weeks. MA treatment reduced total intestinal polyp formation by 45% (P,0.01). Putative molecular mechanisms associated with suppressing intestinal polyposis in ApcMin/+ mice were investigated by comparing microarray expression profiles of MA-treated and control mice and by analyzing the serum metabolic profile using NMR techniques. The different expression phenotype induced by MA suggested that it exerts its chemopreventive action mainly by inhibiting cell-survival signaling and inflammation. These changes eventually induce G1-phase cell cycle arrest and apoptosis. Moreover, the metabolic changes induced by MA treatment were associated with a protective profile against intestinal tumorigenesis. These results show the efficacy and underlying mechanisms of MA against intestinal tumor development in the ApcMin/+ mice model, suggesting its chemopreventive potential against colorectal cancer.
Retroviral infection of the neonatal Peyer's Patch lymphocytes : the mouse mammary tumor virus model
Resumo:
Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-κB in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-κB is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants.
Resumo:
Human chorionic gonadotropin (hCG) and luteinizing hormone (LH) are structurally and functionally similar glycoprotein hormones acting through the same luteinizing hormone chorionic gonadotropin receptor (LHCGR). The functions of LH in reproduction and hCG in pregnancy are well known. Recently, the expression of LHCGR has been found in many nongonadal tissues and cancers, and this has raised the question of whether LH/hCG could affect the function or tumorigenesis of these nongonadal tissues. We have also previously generated an hCG expressing mouse model presenting nongonadal phenotypes. Using this model it is possible to improve our understanding of nongonadal action of highly elevated LH/hCG. In the current study, we analyzed the effect of moderately and highly elevated hCG levels on male reproductive development and function. The main finding was the appearance of fetal Leydig cell (FLC) adenomas in prepubertal males. However, the development and differentiation of FLCs were not significantly affected. We also show that the function of hCG is different in FLCs and in adult Leydig cells (ALC), because in the latter cells hCG was not able to induce tumorigenesis. In FLCs, LHCGR is not desensitized or downregulated upon ligand binding. In this study, we found that the testicular expression of two G protein-coupled receptor kinases responsible for receptor desensitization or downregulation is increased in adult testis. Results suggest that the lack of LHCGR desensitization or downregulation in FLCs protect testosterone (Te) synthesis, but also predispose FLCs for LH/hCG induced adenomas. However, all the hCG induced nongonadal changes observed in male mice were possible to explain by the elevated Te level found in these males. Our findings indicate that the direct nongonadal effects of elevated LH/hCG in males are not pathophysiologically significant. In female mice, we showed that an elevated hCG level was able to induce gonadal tumorigenesis. hCG also induced the formation of pituitary adenomas (PA), but the mechanism was indirect. Furthermore, we found two new potential risk factors and a novel hormonally induced mechanism for PAs. Increased progesterone (P) levels in the presence of physiological estradiol (E2) levels induced the formation of PAs in female mice. E2 and P induced the expression and nuclear localization of a known cell-cycle regulator, cyclin D1. A calorie restricted diet was also able to prevent the formation of PAs, suggesting that obesity is able to promote the formation of PAs. Hormone replacement therapy after gonadectomy and hormone antagonist therapy showed that the nongonadal phenotypes observed in hCG expressing female mice were due to ovarian hyperstimulation. A slight adrenal phenotype was evident even after gonadectomy in hCG expressing females, but E2 and P replacement was able to induce a similar phenotype in WT females without elevated LH/hCG action. In conclusion, we showed that the direct effects of elevated hCG/LH action are limited only to the gonads of both sexes. The nongonadal phenotypes observed in hCG expressing mice were due to the indirect, gonadal hormone mediated effects of elevated hCG. Therefore, the gonads are the only physiologically significant direct targets of LHCGR signalling.
Resumo:
The integrin family of transmembrane receptors are important for cell-matrix adhesion and signal transmission to the interior of the cell. Integrins are essential for many physiological processes and defective integrin function can consequently result in a multitude of diseases, including cancer. Integrin traffic is needed for completion of cytokinesis and cell division failure has been proposed to be an early event in the formation of chromosomally aberrant and transformed cells. Impaired integrin traffic and changes in integrin expression are known to promote invasion of malignant cells. However, the direct roles of impaired integrin traffic in tumorigenesis and increased integrin expression in oncogene driven invasion have not been examined. In this study we have investigated both of these aspects. We found that cells with reduced integrin endocytosis become binucleate and subsequently aneuploid. These aneuploid cells display characteristics of transformed cells; they are anchorage-independent, resistant to apoptosis and invasive in vitro. Importantly, subcutaneous injection of the aneuploid cells into athymic nude mice produced highly malignant tumors. Through gene expression profiling and analysis of integrin-triggered signaling pathways we have identified several molecules involved in the malignancy of these cells, including Src kinase and the transcription factor Twist2. Thus, even though chromosomal aberrations are associated with reduced cell fitness, we show that aneuploidy can facilitate tumor evolution and selection of transformed cells. Invasion and metastasis are the primary reason for deaths caused by cancer and the molecular pathways responsible for invasion are therefore attractive targets in cancer therapy. In addition to integrins, another major family of adhesion receptors are the proteoglycans syndecans. Integrins and syndecans are known to signal in a synergistic manner in controlling cell adhesion on 2D matrixes. Here we explored the role of syndecans as α2β1 integrin co-receptors in 3D collagen. We show that in breast cancer cells harbouring mutant K-Ras, increased levels of integrins, their co-receptors syndecans and matrix cleaving proteases are necessary for the invasive phenotype of these cells. Together, these findings increase our knowledge of the complicated changes that occur during tumorigenesis and the pathways that control the ability of cancer cells to invade and metastasize.
Resumo:
E-cadherin is a cell-cell adhesion molecule and low e-cadherin expression is related to invasiveness and may indicate a bad prognosis in mammary neoplasms. The expression of cell proliferation markers PCNA and especially Ki-67, has also proved to have a strong prognostic value in this tumor class. The expression of these markers was related to the clinical-pathological characteristics of 73 surgically removed mammary tumors in female dogs by immunohistochemistry. There was no statistical correlation between these markers and death by neoplasm, survival time and disease-free interval. However, the loss of e-cadherin expression and marked Ki-67 expression (p=0.016) were considered statistically significant for the diagnosis (p=0.032). When evaluated as independent factors, there was evidence of the relationship between the loss of e-cadherin expression and high PCNA expression with changes in the body status (divided into obese, normal and cachectic) of female dogs (p=0.030); there was also evidence of the relationship between pseudopregnancy and e-cadherin alone (p=0.021) and for ulceration and PCNA alone (p=0.035). The significant correlation between the markers expression and these well known prognostic factors used individually or in combination suggests their prognostic value in canine mammary tumors.
Resumo:
The serpin maspin, a tumor suppressor in breast cancer was described as an inhibitor of cell migration and inducer of cell adhesion between the basement membrane and extracellular matrix resulting in inhibition of tumor metastasis. In contrast, overexpression of maspin is correlated with poor prognosis in other types of cancer. Little is known about expression, regulation and function of maspin in canine mammary tumors. It was demonstrated in this study, a loss of maspin expression in malignant canine mammary cells compared with a pool of normal canine mammary tissue, analyzed by quantitative real-time PCR; weak maspin expression in malignant canine mammary tumors were observed by immunohistochemistry. It was also demonstrated that a correlation with nuclear maspin expression and a good prognosis. It is suggested that maspin could be used as a prognostic marker in canine mammary neoplasia.
Resumo:
This study evaluated the expression of CD14, toll-like receptor (TLR) 2 and TLR4 on the surface of milk neutrophils in bovine mammary glands infected with Corynebacterium bovis. Here, we used 23 culture-negative control quarters with no abnormal secretion on the strip cup test and milk somatic cell count lower than 1x105 cells/mL, and 14 C. bovis infected quarters. The identification of neutrophils, as well as, the percentage of neutrophils that expressed CD14, TLR2 and TLR4 were analyzed by flow cytometry using monoclonal antibodies. The present study encountered no significant difference in the percentages of milk neutrophils that expressed TLR2 and TLR4 or in the expression of TLR4 by milk neutrophils. Conversely, a lower median fluorescence intensity of TLR2 in milk neutrophils was observed in C. bovis-infected quarters. The percentage of neutrophils that expressed CD14 and the median fluorescence intensity of CD14 in milk neutrophils was also lower in C. bovis-infected quarters.