996 resultados para macroalgal species indicators
Resumo:
We have developed a comprehensive ecological indicator for invasive exotic plants, a human-influenced component of the Everglades that could threaten the success of the restoration initiative. Following development of a conceptual ecological model for invasive exotic species, presented as a companion paper in this special issue, we developed criteria to evaluate existing invasive exotic monitoring programs for use in developing invasive exotic performance measures. We then used data from the selected monitoring programs to define specific performance measures, using species presence and abundance as the basis of the indicator for invasive exotic plants. We then developed a series of questions used to evaluate region and/or individual species status with respect to invasion. Finally, we used an expert panel who had answered the questions for invasive exotic plants in the Everglades Lake Okeechobee model to develop a stoplight restoration report card to communicate invasive exotic plant status. The report card system provides a way to effectively evaluate and present indicator data to managers, policy makers, and the public using a uniform format among indicators. Collectively, the model, monitoring assessment, performance measures, and report card enable us to evaluate how invasive plants are impacting the restoration program and how effectively that impact is being managed. Applied through time, our approach also allows us to follow the progress of management actions to control the spread and reduce the impacts of invasive species and can be easily applied and adapted to other large-scale ecosystem projects.
Resumo:
Large numbers of colonially nesting herons, egrets, ibises, storks and spoonbills were one of the defining natural phenomena of the historical Everglades. Reproduction of these species has been tracked over at least a century, and some clear responses to dramatic anthropogenic hydrological alterations have been established. These include a marked decline in nesting populations of several species, and a movement of colonies away from the over-drained estuarine region. Ponding in a large portion of the freshwater marsh has favored species that hunt by sight in deep water (egrets, cf. 25–45 cm), while tactile feeders (ibises and storks) that depend on concentrated prey in shallow water (5–25 cm) have become proportionately much less common. There has been a marked increase in the interval between exceptionally large breeding aggregations of White Ibises (Eudocimus albus). Loss of short hydroperiod wetlands on the margins of the Everglades have delayed nest initiations 1–2 months by Wood Storks (Mycteria americana) resulting in poor nesting success. These responses are consistent with mechanisms that involve foraging, and the availability and production of prey animals, and each of the relationships is highly dependent on hydrology. Here, we define a group of characteristics about wading bird dynamics (= indicators) that collectively track the specific ecological relationships that supported ibises and storks in the past. We suggest four metrics as indicators of restoration success: timing of nesting by storks, the ratio of nesting ibises + storks to Great Egrets, the proportion of all nests located in the estuarine/freshwater ecotone, and the interval between years with exceptionally large ibis nestings. Each of these metrics has historical (e.g., predrainage) data upon which to base expectations for restoration, and the metrics have little measurement error relative to the large annual variation in numbers of nests. In addition to the strong scientific basis for the use of these indicators, wading birds are also a powerful tool for public communication because they have strong aesthetic appeal, and their ecological relationships with water are intuitively understandable. In the interests of communicating with the public and decision-makers, we integrate these metrics into a single-page annual “traffic-light” report card for wading bird responses. Collectively, we believe these metrics offer an excellent chance of detecting restoration of the ecosystem functions that supported historical wading bird nesting patterns.
Resumo:
Despite marked gradients in nutrient availability that control the abundance and species composition of seagrasses in south Florida, and the importance of nutrient availability in controlling abundance and composition of epiphytes on seagrasses in other locations, we did not find that epiphyte load on the dominant seagrass, Thalassia testudinum, or that the relative contribution of algal epiphytes to the epiphyte community, was positively correlated with nutrient availability in the water column or the sediment in oligotrophic seagrass beds. Further, the abundance of microphytobenthos, as indicated by Chlorophyll-aconcentration in the sediments, was not directly correlated with concentrations of nutrients in the sediments. Our results suggest that epiphyte and microphytobenthos abundance are not unambiguous indicators of nutrient availability in relatively pristine seagrass environments, and therefore would make poor candidates for indicators of the status and trends of seagrass ecosystems in relatively low-nutrient environments like the Florida Keys.
Resumo:
Limestone-based (karstic) freshwater wetlands of the Everglades, Belize, Mexico, and Jamaica are distinctive in having a high biomass of CaCO3-rich periphyton mats. Diatoms are common components of these mats and show predictable responses to environmental variation, making them good candidates for assessing nutrient enrichment in these naturally ultraoligotrophic wetlands. However, aside from in the Everglades of southern Florida, very little research has been done to document the diatoms and their environmental preferences in karstic Caribbean wetlands, which are increasingly threatened by eutrophication. We identified diatoms in periphyton mats collected during wet and dry periods from the Everglades and similar freshwater karstic wetlands in Belize, Mexico, and Jamaica. We compared diatom assemblage composition and diversity among locations and periods, and the effect of the limiting nutrient, P, on species composition among locations. We used periphyton-mat total P (TP) as a metric of availability. A total of 176 diatom species in 45 genera were recorded from the 4 locations. Twenty-three of these species, including 9 that are considered indicative of Everglades diatom flora, were found in all 4 locations. In Everglades and Caribbean sites, we identified assemblages and indicator species associated with low and high periphyton-mat TP and calculated TP optima and tolerances for each indicator species. TP optima and tolerances of indicator species differed between the Everglades and the Caribbean, but weighted averaging models predicted periphyton-mat TP concentrations from diatom assemblages at Everglades (R2 = 0.56) and Caribbean (R2 = 0.85) locations. These results show that diatoms can be effective indicators of water quality in karstic wetlands of the Caribbean, but application of regionally generated transfer functions to distant sites provides less reliable estimates than locally developed functions.
Resumo:
A suite of seagrass indicator metrics is developed to evaluate four essential measures of seagrass community status for Florida Bay. The measures are based on several years of monitoring data using the Braun-Blanquet Cover Abundance (BBCA) scale to derive information about seagrass spatial extent, abundance, species diversity and presence of target species. As ecosystem restoration proceeds in south Florida, additional freshwater will be discharged to Florida Bay as a means to restore the bay's hydrology and salinity regime. Primary hypotheses about restoring ecological function of the keystone seagrass community are based on the premise that hydrologic restoration will increase environmental variability and reduce hypersalinity. This will create greater niche space and permit multiple seagrass species to co-exist while maintaining good environmental conditions for Thalassia testudinum, the dominant climax seagrass species. Greater species diversity is considered beneficial to habitat for desired higher trophic level species such as forage fish and shrimp. It is also important to maintenance of a viable seagrass community that will avoid die-off events observed in the past. Indicator metrics are assigned values at the basin spatial scale and are aggregated to five larger zones. Three index metrics are derived by combining the four indicators through logic gates at the zone spatial scale and aggregated to derive a single bay-wide system status score standardized on the System-wide Indicator protocol. The indicators will provide a way to assess progress toward restoration goals or reveal areas of concern. Reporting for each indicator, index and overall system status score is presented in a red–yellow–green format that summarizes information in a readily accessible form for mangers, policy-makers and stakeholders in planning and implementing an adaptive management strategy.
Resumo:
Alligators and crocodiles integrate biological impacts of hydrological operations, affecting them at all life stages through three key aspects of Everglades ecology: (1) food webs, (2) diversity and productivity, and (3) freshwater flow. Responses of crocodilians are directly related to suitability of environmental conditions and hydrologic change. Correlations between biological responses and environmental conditions contribute to an understanding of species’ status and trends over time. Positive or negative trends of crocodilian populations relative to hydrologic changes permit assessment of positive or negative trends in restoration. The crocodilian indicator uses monitoring parameters (performance measures) that have been shown to be both effective and efficient in tracking trends. The alligator component uses relative density (reported as an encounter rate), body condition, and occupancy rates of alligator holes; the crocodile component uses juvenile growth and hatchling survival. We hypothesize that these parameters are correlated with hydrologic conditions including depth, duration, timing, spatial extent and water quality. Salinity is a critical parameter in estuarine habitats. Assessments of parameters defined for crocodilian performance measures support these hypotheses. Alligators and crocodiles are the charismatic megafauna of the Everglades. They are both keystone and flagship species to which the public can relate. In addition, the parameters used to track trends are easy to understand. They provide answers to the following questions: How has the number of alligators or crocodiles changed? Are the animals fatter or thinner than they should be? Are the animals in the places (in terms of habitat and geography) where they should be? As surely as there is no other Everglades, no other single species defines the Everglades as does the American alligator. The Everglades is the only place in the world where both alligators and crocodiles exist. Crocodilians clearly respond to changes in hydrologic parameters of management interest. These relationships are easy to communicate and mean something to managers, decision makers, and the public. Having crocodilians on the list of system-wide, general indicators provides us with one of the most powerful tools we have to communicate progress of ecosystem restoration in Greater Everglades ecosystems to diverse audiences.
Resumo:
A major goal of the Comprehensive Everglades Restoration Plan (CERP) is to recover historical (pre-drainage) wading bird rookeries and reverse marked decreases in wading bird nesting success in Everglades National Park. To assess efforts to restore wading birds, a trophic hypothesis was developed that proposes seasonal concentrations of small-fish and crustaceans (i.e., wading bird prey) were a key factor to historical wading bird success. Drainage of the Everglades has diminished these seasonal concentrations, leading to a decline in wading bird nesting and displacing them from their historical nesting locations. The trophic hypothesis predicts that restoring historical hydrological patterns to pre-drainage conditions will recover the timing and location of seasonally concentrated prey, ultimately restoring wading bird nesting and foraging to the southern Everglades. We identified a set of indicators using small-fish and crustaceans that can be predicted from hydrological targets and used to assess management success in regaining suitable wading bird foraging habitat. Small-fish and crustaceans are key components of the Everglades food web and are sensitive to hydrological management, track hydrological history with little time lag, and can be studied at the landscape scale. The seasonal hydrological variation of the Everglades that creates prey concentrations presents a challenge to interpreting monitoring data. To account for the variable hydrology of the Everglades in our assessment, we developed dynamic hydrological targets that respond to changes in prevailing regional rainfall. We also derived statistical relationships between density and hydrological drivers for species representing four different life-history responses to drought. Finally, we use these statistical relationships and hydrological targets to set restoration targets for prey density. We also describe a report-card methodology to communicate the results of model-based assessments for communication to a broad audience.
Resumo:
This paper gives a modern circumscription of Tropical/Subtropical diatoms regarding their relationship with sea-surface temperatures (SST) and sea ice cover. Diatoms from 228 core-top sediment samples collected from the Southern Ocean were studied to determine the geographic distribution of eight major diatom species/taxa preserved in surface sediments generally located north of the Subantarctic Front. The comparison of the relative contribution of diatom species with modern February SST and sea-ice cover reveals species-specific sedimentary distributions regulated both by water temperatures and sea ice conditions. Although selective preservation might have played some role, their presence in surface and downcore sediments from the Southern Ocean are reliable indicators of high SST and poleward transport of waters from the Tropical/Subtropical Atlantic. Our work supports the use of diatom remains to reconstruct past variations of these environmental parameters via qualitative and transfer function approaches.
Resumo:
Environmental indicators have been proposed as a means to assess ecological integrity, monitoring both chemical and biological stressors. In this study, we used nestling bald eagles as indicators to quantify direct or indirect tertiary-level contaminant exposure. The spatial and temporal trends of polychlorinated biphenyl (PCB) congeners were evaluated in nestling plasma from 1999–2014. Two hexa-chlorinated congeners, PCB-138 and 153, were detected with the highest frequency and greatest concentrations throughout Michigan. Less-chlorinated congeners such as PCB-52 and 66 however, comprised a greater percentage of total PCB concentrations in nestlings proximate to urbanized areas, such as along the shorelines of Lake Erie. Toxic equivalents were greatest in the samples collected from nestlings located on Lake Erie, followed by the other Great Lakes spatial regions. Nestling plasma samples were also used to measure concentrations of the most heavily-used group of flame retardants, brominated diphenyl ethers (BDEs), and three groups of alternative flame retardants, non-BDE Brominated Flame Retardants (NBFRS), Dechloranes, and organophosphate esters (OPs). BDE-47, 99 and 100 contributed the greatest to total BDE concentrations. Concentrations of structurally similar NBFRs found in this study and recent atmospheric studies indicate that they are largely used as replacements to previously used BDE mixtures. A variety of Dechloranes, or derivatives of Mirex and Dechlorane Plus, were measured. Although, measured at lesser concentrations, environmental behavior of these compounds may be similar to mirex and warrant future research in aquatic species. Concentrations of OPs in nestling plasma were two to three orders of magnitude greater than all other groups of flame retardants. In addition to chemical indicators, bald eagles have also been proposed as indicators to identify ecological stressors using population measures that are tied to the fitness of individuals and populations. Using mortality as a population vitality rate, vehicle collisions were found to be the main source of mortality with a greater incidence for females during white-tailed deer (Odocoileus virginianus) hunting months and spring snow-melt. Lead poisoning was the second greatest source of mortality, with sources likely due to unretrieved hunter-killed, white-tailed deer carcasses, and possibly exacerbated by density-dependent effects due to the growing population in Michigan.
Resumo:
Inland sand dune systems are amongst the most threatened habitat types of Europe. Affected by severe conditions, these habitats present distinct community compositions, which makes them excellent for studying possible interactions among their integrating species and the environment. We focus on understanding the distribution and cooccurrence of the species from dune plant assemblages as a key step for the adequate protection of these habitats. Using data from an extensive survey we identified the shrub species that could be considered indicators of the different xerophytic scrub dune communities in South West Portugal. Then, we modelled the responses of these species to the environmental conditions using Ecological Niche Factor Analysis. We present some preliminary results elucidating whether using species distribution models of indicator species at a regional scale is a valid approach to predict the distribution of the different types of communities inhabiting these endangered habitats.
Resumo:
Montados form a heterogeneous landscape of wooded matrix dominated by cork and/or holm oak with open areas characterized by fuzzy boundaries. Montado supports a high biological diversity associated to low intensity management and a landscape diversity provided by a continuous gradient of land cover. Among other features this permits the classification of montados as a High Nature Value (HNV) system. We assessed the role of birds as HNV indicators for montado, and tested several bird groups—farmland, edge, forest generalists and forest specialists species; and some universal indicators such as species conservation status, Shannon’s diversity index and species richness. Our study areas covered the North–South distribution of cork oak in Portugal, and we surveyed the breeding bird communities across 117 sampling sites. In addition to variables related to management and sanitary status, we considered variables that characterize the landscape heterogeneity inside the montado—trees and shrub density and richness of woody vegetation. Our results suggest that specific bird guilds can be used as HNV indicators of particular typologies of montado, and highlight the need to develop an indicator that could be transversally applied to all types of montado.
Resumo:
Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.
Resumo:
The Atlantic rainforest species Ocotea catharinensis, Ocotea odorifera, and Ocotea porosa have been extensively harvested in the past for timber and oil extraction and are currently listed as threatened due to overexploitation. To investigate the genetic diversity and population structure of these species, we developed 8 polymorphic microsatellite markers for O. odorifera from an enriched microsatellite library by using 2 dinucleotide repeats. The microsatellite markers were tested for cross-amplification in O. catharinensis and O. porosa. The average number of alleles per locus was 10.2, considering all loci over 2 populations of O. odorifera. Observed and expected heterozygosities for O. odorifera ranged from 0.39 to 0.93 and 0.41 to 0.92 across populations, respectively. Cross-amplification of all loci was successfully observed in O. catharinensis and O. porosa except 1 locus that was found to lack polymorphism in O. porosa. Combined probabilities of identity in the studied Ocotea species were very low ranging from 1.0 x 10-24 to 7.7 x 10-24. The probability of exclusion over all loci estimated for O. odorifera indicated a 99.9% chance of correctly excluding a random nonparent individual. The microsatellite markers described in this study have high information content and will be useful for further investigations on genetic diversity within these species and for subsequent conservation purposes.
Resumo:
Since insect species are poikilothermic organisms, they generally exhibit different growth patterns depending on the temperature at which they develop. This factor is important in forensic entomology, especially for estimating postmortem interval (PMI) when it is based on the developmental time of the insects reared in decomposing bodies. This study aimed to estimate the rates of development, viability, and survival of immatures of Sarcophaga (Liopygia) ruficornis (Fabricius 1794) and Microcerella halli (Engel 1931) (Diptera: Sarcophagidae) reared in different temperatures: 10, 15, 20, 25, 30, and 35 ± 1 °C. Bovine raw ground meat was offered as food for all experimental groups, each consisting of four replicates, in the proportion of 2 g/larva. To measure the evolution of growth, ten specimens of each group were randomly chosen and weighed every 12 h, from initial feeding larva to pupae, and then discarded. Considering the records of weight gain, survival rates, and stability of growth rates, the range of optimum temperature for the development of S. (L.) ruficornis is between 20 and 35 °C, and that of M. halli is between 20 and 25 °C. For both species, the longest times of development were in the lowest temperatures. The survival rate at extreme temperatures (10 and 35 °C) was lower in both species. Biological data such as the ones obtained in this study are of great importance to achieve a more accurate estimate of the PMI.