964 resultados para machine-tools
Resumo:
"October 1975."
Resumo:
Includes index.
Resumo:
"October 1970."
Resumo:
"June 1988."
Resumo:
"August 1976."
Resumo:
Mode of access: Internet.
Resumo:
Postprint
Resumo:
The Java programming language has potentially significant advantages for wireless sensor nodes but there is currently no feature-rich, open source virtual machine available. In this paper we present Darjeeling, a system comprising offline tools and a memory efficient run-time. The offline post-compiler tool analyzes, links and consolidates Java class files into loadable modules. The runtime implements a modified Java VM that supports multithreading and is designed specifically to operate in constrained execution environments such as wireless sensor network nodes and supports inheritance, threads, garbage collection, and loadable modules. We have demonstrated Java running on AVR128 and MSP430 microcontrollers at speeds of up to 70,000 JVM instructions per second.
Resumo:
The Java programming language enjoys widespread popularity on platforms ranging from servers to mobile phones. While efforts have been made to run Java on microcontroller platforms, there is currently no feature-rich, open source virtual machine available. In this paper we present Darjeeling, a system comprising offline tools and a memory efficient runtime. The offline post-compiler tool analyzes, links and consolidates Java class files into loadable modules. The runtime implements a modified Java VM that supports multithreading and is designed specifically to operate in constrained execution environments such as wireless sensor network nodes. Darjeeling improves upon existing work by supporting inheritance, threads, garbage collection, and loadable modules while keeping memory usage to a minimum. We have demonstrated Java running on AVR128 and MSP430 micro-controllers at speeds of up to 70,000 JVM instructions per second.
Resumo:
The topic of fault detection and diagnostics (FDD) is studied from the perspective of proactive testing. Unlike most research focus in the diagnosis area in which system outputs are analyzed for diagnosis purposes, in this paper the focus is on the other side of the problem: manipulating system inputs for better diagnosis reasoning. In other words, the question of how diagnostic mechanisms can direct system inputs for better diagnosis analysis is addressed here. It is shown how the problem can be formulated as decision making problem coupled with a Bayesian Network based diagnostic mechanism. The developed mechanism is applied to the problem of supervised testing in HVAC systems.
Resumo:
A diagnostic method based on Bayesian Networks (probabilistic graphical models) is presented. Unlike conventional diagnostic approaches, in this method instead of focusing on system residuals at one or a few operating points, diagnosis is done by analyzing system behavior patterns over a window of operation. It is shown how this approach can loosen the dependency of diagnostic methods on precise system modeling while maintaining the desired characteristics of fault detection and diagnosis (FDD) tools (fault isolation, robustness, adaptability, and scalability) at a satisfactory level. As an example, the method is applied to fault diagnosis in HVAC systems, an area with considerable modeling and sensor network constraints.
Resumo:
The security of power transfer across a given transmission link is typically a steady state assessment. This paper develops tools to assess machine angle stability as affected by a combination of faults and uncertainty of wind power using probability analysis. The paper elaborates on the development of the theoretical assessment tool and demonstrates its efficacy using single machine infinite bus system.
Resumo:
Power system stabilizer (PSS) is one of the most important controllers in modern power systems for damping low frequency oscillations. Many efforts have been dedicated to design the tuning methodologies and allocation techniques to obtain optimal damping behaviors of the system. Traditionally, it is tuned mostly for local damping performance, however, in order to obtain a globally optimal performance, the tuning of PSS needs to be done considering more variables. Furthermore, with the enhancement of system interconnection and the increase of system complexity, new tools are required to achieve global tuning and coordination of PSS to achieve optimal solution in a global meaning. Differential evolution (DE) is a recognized as a simple and powerful global optimum technique, which can gain fast convergence speed as well as high computational efficiency. However, as many other evolutionary algorithms (EA), the premature of population restricts optimization capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of 39-Bus New-England system. New operators are introduced to reduce the probability of getting premature. To investigate the impact of system conditions on PSS tuning, multiple operating points will be studied. Simulation result is compared with standard DE and particle swarm optimization (PSO).
Resumo:
Väitöskirjani käsittele mikrobien ja erilaisten kemikaalien rooleja saostumien ja biofilmien muodostumisessa paperi- ja kartonkikoneilla. "Saostuma" tässä työssä tarkoittaa kiinteän aineen kertymää konepinnoille tai rajapinnoille konekierroissa, jotka on tarkoitettu massasulppujen, lietteiden, vesien tai ilman kuljetukseen. Saostumasta tulee "biofilmi" silloin kun sen oleellinen rakennekomponentti on mikrobisolut tai niiden tuotteet. Väitöstyöni työhypoteesina oli, että i. tietämys saostumien koostumuksesta, sekä ii. niiden rakenteesta, biologisista, fysikaalis-kemiallisista ja teknisistä ominaisuuksista ohjaavat tutkijaa löytämään ympäristöä säästäviä keinoja estää epätoivottujen saostumien muodostus tai purkaa jo muodostuneita saostumia. Selvittääkseni saostumien koostumista ja rakennetta käytin monia erilaisia analytiikan työkaluja, kuten elektronimikroskopiaa, konfokaali-laser mikroskopiaa (CLSM), energiadispersiivistä röntgenanalyysiä (EDX), pyrolyysi kaasukromatografiaa yhdistettynä massaspektrometriaan (Py-GCMS), joninvaihtokromatografiaa, kaasukromatografiaa ja mikrobiologisia analyysejä. Osallistuin aktiivisesti innovatiivisen, valon takaisinsirontaan perustuvan sensorin kehittämistyöhön, käytettäväksi biofilmin kasvun mittaukseen suoraan koneen vesikierroista ja säiliöistä. Työni osoitti, että monet paperinvalmistuksessa käytetyistä kemikaaleista reagoivat keskenään tuottaen orgaanisia tahmakerroksia konekiertojen teräspinnoille. Löysin myös kerrostumia, jotka valomikroskooppisessa tarkastelussa oli tulkittu mikrobeiksi, mutta jotka elektronimikroskopia paljasti alunasta syntyneiksi, alumiinihydroksidiksi joka saostui pH:ssa 6,8 kiertokuitua käyttävän koneen viiravesistä. Monet paperintekijät käyttävät vieläkin alunaa kiinnitysaineena vaikka prosessiolot ovat muuttuneet happamista neutraaleiksi. Sitä pidetään paperitekijän "aspiriinina", mutta väitöstutkimukseni osoitti sen riskit. Löysin myös orgaanisia saostumia, joiden alkuperä oli aineiden, kuten pihkan, saippuoituminen (kalsium saippuat) niin että muodostui tahmankasvua ylläpitävä alusta monilla paperi- ja kartonkikoneilla. Näin solumuodoiltaan Deinococcus geothermalista muistuttavia bakteereita kasvamassa lujasti teräskoepalojen pintaan kiinnittyneinä pesäkkeinä, kun koepaloja upotettiin paperikoneiden vesikiertoihin. Nämä deinokokkimaiset pesäkkeet voivat toimia jalustana, tarttumisalustana muiden mikrobien massoille, joka selittäisi miksi saostumat yleisesti sisältävät deinokokkeja pienenä, muttei koskaan pääasiallisena rakenneosana. Kun paperikoneiden käyttämien vesien (raakavedet, lämminvesi, biologisesti puhdistettu jätevesi) laatua tutkitaan, mittausmenetelmällä on suuri merkitys. Koepalan upotusmenetelmällä todettu biofilmikasvu ja viljelmenetelmällä mitattu bakteerisaastuneisuus korreloivat toisiinsa huonosti etenkin silloin kun likaantumisessa oli mukana rihmamaiseti kasvavia bakteereja. Huoli ympäristöstä on pakottanut paperi- ja kartonkikoneiden vesikiertojen sulkemiseen. Vesien kierrätys ja prosessivesien uudelleenkäyttö nostavat prosessilämpötilaa ja lisäävät koneella kiertävien kolloidisten ja liuenneiden aineiden määriä. Tutkin kiertovesien pitoisuuksia kolmessa eriasteisesti suljetussa tehtaassa, joiden päästöt olivat 0 m3, 0,5 m3 ja 4 m3 jätevettä tuotetonnia kohden, perustuen puhdistetun jäteveden uudelleen käyttöön. Nollapäästöisellä tehtaalla kiertovesiin kertyi paljon orgaanisesti sidottua hiiltä (> 10 g L-1), etenkin haihtuvina happoina (maito-, etikka-, propioni- ja voi-). Myös sulfaatteja, klorideja, natriumia ja kalsiumia kertyi paljon, > 1 g L-1 kutakin. Pääosa (>40%) kaikista bakteereista oli 16S rRNA geenisekvenssianalyysien tulosten perusteella sukua, joskin etäistä (< 96%) ainoastaan Enterococcus cecorum bakteerille. 4 m3 päästävältä tehtaalta löytyi lisäksi Bacillus thermoamylovorans ja Bacillus coagulans. Tehtaiden saostumat sisälsivät arkkeja suurina pitoisuuksina, ≥ 108 g-1, mutta tunnistukseen riittävää sekvenssisamanlaisuutta löytyi vain yhteen arkkisukuun, Methanothrix. Tutkimustulokset osoittivat että tehtaan vesikiertojen sulkeminen vähensi rajusti mikrobiston monimuotoisuutta, muttei estänyt liuenneen aineen ja kiintoaineen mineralisoitumista.
Resumo:
Many evolutionary algorithm applications involve either fitness functions with high time complexity or large dimensionality (hence very many fitness evaluations will typically be needed) or both. In such circumstances, there is a dire need to tune various features of the algorithm well so that performance and time savings are optimized. However, these are precisely the circumstances in which prior tuning is very costly in time and resources. There is hence a need for methods which enable fast prior tuning in such cases. We describe a candidate technique for this purpose, in which we model a landscape as a finite state machine, inferred from preliminary sampling runs. In prior algorithm-tuning trials, we can replace the 'real' landscape with the model, enabling extremely fast tuning, saving far more time than was required to infer the model. Preliminary results indicate much promise, though much work needs to be done to establish various aspects of the conditions under which it can be most beneficially used. A main limitation of the method as described here is a restriction to mutation-only algorithms, but there are various ways to address this and other limitations.