895 resultados para mTOR signaling pathway


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In shark heart, the Na+–Ca2+ exchanger serves as a major pathway for both Ca2+ influx and efflux, as there is only rudimentary sarcoplasmic reticulum in these hearts. The modulation of the exchanger by a β-adrenergic agonist in whole-cell clamped ventricular myocytes was compared with that of the Na+–Ca2+ exchanger blocker KB-R7943. Application of 5 μM isoproterenol and 10 μM KB-R7943 suppressed both the inward and the outward Na+–Ca2+ exchanger current (INa−Ca). The isoproterenol effect was mimicked by 10 μM forskolin. Isoproterenol and forskolin shifted the reversal potential (Erev) of INa−Ca by approximately −23 mV and −30 mV, respectively. An equivalent suppression of outward INa−Ca by KB-R7943 to that by isoproterenol produced a significantly smaller shift in Erev of about −4 mV. The ratio of inward to outward exchanger currents was also significantly larger in isoproterenol- than in control- and KB-R7943-treated myocytes. Our data suggest that the larger ratio of inward to outward exchanger currents as well as the larger shift in Erev with isoproterenol results from the enhanced efficacy of Ca2+ efflux via the exchanger. The protein kinase A-mediated bimodal regulation of the exchanger in parallel with phosphorylation of the Ca2+ channel and enhancement of its current may have evolved to satisfy the evolutionary needs for accelerated contraction and relaxation in hearts of animals with vestigial sarcoplasmic Ca2+ release stores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In bovine adrenal medullary cells synergistically acting type 1 and type 2 angiotensin II (AII) receptors activate the fibroblast growth factor-2 (FGF-2) gene through a unique AII-responsive promoter element. Both the type 1 and type 2 AII receptors and the downstream cyclic adenosine 1′,3′-monophosphate- and protein kinase C-dependent signaling pathways activate the FGF-2 promoter through a novel signal-transducing mechanism. This mechanism, which we have named integrative nuclear FGF receptor-1 signaling, involves the nuclear translocation of FGF receptor-1 and its subsequent transactivation of the AII-responsive element in the FGF-2 promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphoinositide-dependent kinase-1 (PDK-1) is a central mediator of the cell signaling between phosphoinositide 3-kinase (PI3K) and various intracellular serine/threonine kinases including Akt/protein kinase B (PKB), p70 S6 kinases, and protein kinase C. Recent studies with cell transfection experiments have implied that PDK-1 may be involved in various cell functions including cell growth and apoptosis. However, despite its pivotal role in cellular signalings, the in vivo functions of PDK-1 in a multicellular system have rarely been investigated. Here, we have isolated Drosophila PDK-1 (dPDK-1) mutants and characterized the in vivo roles of the kinase. Drosophila deficient in the dPDK-1 gene exhibited lethality and an apoptotic phenotype in the embryonic stage. Conversely, overexpression of dPDK-1 increased cell and organ size in a Drosophila PI3K-dependent manner. dPDK-1 not only could activate Drosophila Akt/PKB (Dakt1), but also substitute the in vivo functions of its mammalian ortholog to activate Akt/PKB. This functional interaction between dPDK-1 and Dakt1 was further confirmed through genetic analyses in Drosophila. On the other hand, cAMP-dependent protein kinase, which has been proposed as a possible target of dPDK-1, did not interact with dPDK-1. In conclusion, our findings provide direct evidence that dPDK-1 regulates cell growth and apoptosis during Drosophila development via the PI3K-dependent signaling pathway and demonstrate our Drosophila system to be a powerful tool for elucidating the in vivo functions and targets of PDK-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of the activated insulin receptor (IR) with its substrate, insulin receptor substrate 1 (IRS-1), via the phosphotyrosine binding domain of IRS-1 and the NPXY motif centered at phosphotyrosine 960 of the IR, is important for IRS-1 phosphorylation. We investigated the role of this interaction in the insulin signaling pathway that stimulates glucose transport. Utilizing microinjection of competitive inhibitory reagents in 3T3-L1 adipocytes, we have found that disruption of the IR/IRS-1 interaction has no effect upon translocation of the insulin-responsive glucose transporter (GLUT4). The activity of these reagents was demonstrated by their ability to block insulin stimulation of two distinct insulin bioeffects, membrane ruffling and mitogenesis, in 3T3-L1 adipocytes and insulin-responsive rat 1 fibroblasts. These data suggest that phosphorylated IRS-1 is not an essential component of the metabolic insulin signaling pathway that leads to GLUT4 translocation, yet it appears to be required for other insulin bioeffects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor type beta (TGF-beta) is a multifunctional factor that regulates proliferation and differentiation of many cell types. TGF-beta mediates its effects by binding to and activating cell surface receptors that possess serine/threonine kinase activity. However, the intracellular signaling pathways through which TGF-beta receptors act remain largely unknown. Here we show that TGF-beta activates a 78-kDa protein (p78) serine/threonine kinase as evidenced by an in-gel kinase assay. Ligand-induced activation of the kinase was near-maximal 5 min after TGF-beta addition to the cells and occurred exclusively on serine and threonine residues. This kinase is distinct from TGF-beta receptor type II, as well as several cytoplasmic serine/threonine kinases of similar size, including protein kinase C, Raf, mitogen-activated protein kinase kinase kinase, and ribosomal S6 kinase. Indeed, these kinases can be separated almost completely from p78 kinase by immunoprecipitation with specific antibodies. Furthermore, using different cell lines, we demonstrate that p78 kinase is activated only in cells for which TGF-beta can act as a growth inhibitory factor. These data raise the interesting possibility that protein serine/threonine kinases contribute to the intracellular relay of biological signals originating from receptor serine/threonine kinases such as the TGF-beta receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular cellulase activity is readily induced when the chestnut blight fungus Cryphonectria parasitica is grown on cellulose substrate as the sole carbon source. However, an isogenic C. parasitica strain rendered hypovirulent due to hypovirus infection failed to secrete detectable cellulase activity when grown under parallel conditions. Efforts to identify C. parasitica cellulase-encoding genes resulted in the cloning of a cellobiohydrolase (exoglucanase, EC 3.2.1.91) gene designated chb-1. Northern blot analysis revealed an increase in cbh-1 transcript accumulation in a virus-free virulent C. parasitica strain concomitant with the induction of extracellular cellulase activity. In contrast, induction of cbh-1 transcript accumulation was suppressed in an isogenic hypovirus-infected strain. Significantly, virus-free C. parasitica strains rendered hypovirulent by transgenic cosuppression of a GTP-binding protein alpha subunit were also found to be deficient in the induction of cbh-1 transcript accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factor-2 (FGF-2) is mitogenic for the human breast cancer cell line MCF-7; here we investigate some of the signaling pathways subserving this activity. FGF-2 stimulation of MCF-7 cells resulted in a global increase of intracellular tyrosine phosphorylation of proteins, particularly FGF receptor substrate-2, the protooncogene product Src and the mitogen-activated protein kinase (MAP kinase) cascade, A major increase in the tyrosine phosphorylation of a 30-kDa protein species was also found. This protein was identified as cyclin D2 by mass spectrometry after trypsin digestion. Immunoprecipitation of cyclin D2 and immunoblotting with anti-phosphotyrosine antibodies confirmed that the tyrosine phosphorylation of cyclin D2 was indeed induced by FGF-2 stimulation. In addition, pharmacological inhibition of Src (with herbimycin A and PP2), and of the MAP kinase cascade (with PD98059), confirmed that Src activity is required for the FGF-2-induced phosphorylation of cyclin D2 whereas MAP kinase activity is not, Thus, tyrosine phosphorylation of cyclin D2 may be a hey regulatory target for FGF-2 signaling. (C) 2000 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal endothelial dysfunction in preeclampsia is associated with increased soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating antagonist of vascular endothelial growth factor and placental growth factor. Angiotensin II (Ang II) is a potent vasoconstrictor that increases concomitant with sFlt-1 during pregnancy. Therefore, we speculated that Ang II may promote the expression of sFlt-1 in pregnancy. Here we report that infusion of Ang II significantly increases circulating levels of sFlt-1 in pregnant mice, thereby demonstrating that Ang II is a regulator of sFlt-1 secretion in vivo. Furthermore, Ang II stimulated sFlt-1 production in a dose- and time-dependent manner from human villous explants and cultured trophoblasts but not from endothelial cells, suggesting that trophoblasts are the primary source of sFlt-1 during pregnancy. As expected, Ang II-induced sFlt-1 secretion resulted in the inhibition of endothelial cell migration and in vitro tube formation. In vitro and in vivo studies with losartan, small interfering RNA specific for calcineurin and FK506 demonstrated that Ang II-mediated sFlt-1 release was via Ang II type 1 receptor activation and calcineurin signaling, respectively. These findings reveal a previously unrecognized regulatory role for Ang II on sFlt-1 expression in murine and human pregnancy and suggest that elevated sFlt-1 levels in preeclampsia may be caused by a dysregulation of the local renin/angiotensin system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CEP161 is a novel component of the Dictyostelium discoideum centrosome and is the ortholog of mammalian CDK5RAP2. Mutations in CDK5RAP2 are associated with autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder characterized by reduced head circumference, a reduction in the size of the cerebral cortex and a mild to moderate mental retardation. Here we show that the amino acids 1-763 of the 1381 amino acids of CEP161 protein are sufficient for centrosomal targeting and centrosome association. AX2 cells over-expressing truncated and full length CEP161 proteins have defects in growth and development. Furthermore, we identified the kinase SvkA (severinkinase A) as its interaction partner which is the D. discoideum Hippo related kinase designated here as Hrk-svk. Hrk-svk is the direct homolog of human MST1. Both proteins co-localize at the centrosome. We further demonstrate that this interaction is also conserved in mammals. We were able to show that CDK5RAP2 interacts with MST1 and TAZ and it also down-regulates the transcript levels of TAZ in HEK293T cells. Taken together, our data on Dictyostelium CEP161 and human CDK5RAP2 supports the hypothesis that CDK5RAP2 as a novel regulator of Hippo signaling pathway. We propose that CDK5RAP2 mutations may lead to a decrease in the number of neurons and the subsequent reduction of brain size by regulating the hippo signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain amino acids, such as leucine (Leu) are not only substrates for protein synthesis but also are important regulators of protein metabolism. Moreover, it is known that alterations in intrauterine growth favor the development of chronic diseases in adulthood. Therefore, we investigated the role of Leu in combination with other BCAA on effects that are induced by maternal protein restriction on fetal growth. Wistar rats were divided into 4 groups according to the diet provided during pregnancy: control (C; 20% casein); V+I [5% casein + 2% L-valine (Val) + 2% L-isoleucine (Ile)1; KYT 15% casein + 1.8% L-lysine (Lys) + 1.2% L-tyrosine (Tyr) + 1% L-threonine (Thr)1; and BCAA (5% casein + 1.8% L-Leu + 1.2% L-Val + 1% L-Ile). Maternal protein restriction reduced the growth and organ weight of the offspring of dams receiving the V+I and KYT diets compared with the C group. Supplementation with BCAA reversed this growth deficit, minimizing the difference or restoring the mass of organs and carcass fat, the liver and muscle protein, and the RNA concentrations compared with newborns in the C group (P < 0.05). These effects could be explained by the activation of the mTOR signaling pathway, because phosphorylation of 4E-BP1 in the liver of offspring of the BCAA group was greater than that in the C, V+I, and KYT groups. The present results identify a critical role for Leu in association with other BCAA in the activation of the mTOR signaling pathway for the control of altered intrauterine growth induced by a maternal low-protein diet. J. Nutr. 142: 924-930, 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O carcinoma epidermóide bucal (CEC) é uma neoplasia maligna com alta morbidade e mortalidade e de difícil tratamento. O tratamento convencional para o CEC inclui cirurgia e radioterapia, seguida ou não de quimioterapia. Apesar de serem amplamente difundidos, esses tratamentos podem ser ineficazes para alguns CECs resistentes. A terapia fotodinâmica (PDT) oncológica tem sido utilizada para o tratamento adjuvante do CEC bucal, principalmente nos casos menos invasivos e que necessitam de redução do tumor para a ressecção cirúrgica. Contudo, semelhantemente aos tratamentos convencionais, a PDT pode também induzir o aparecimento de populações celulares resistentes, fato já descrito para carcinoma cutâneo, adenocarcinoma de cólon e adenocarcinoma mamário. A hipótese de que células de CEC bucal possam desenvolver resistência à PDT ainda não foi testada. Portanto, o objetivo deste trabalho foi verificar se células de CEC bucal (SCC9) desenvolvem resistência a ciclos repetidos de PDT mediada pelo ácido 5- aminolevulínico (5-ALA-PDT) e avaliar se nesse processo ocorre modificação da expressão de marcadores relacionados a sobrevivência celular (NF?B, Bcl-2, iNOS, mTOR e Akt). Foi utilizada linhagem de células de CEC bucal (SCC9), submetida às seguintes condições: 1) Controle - células cultivadas sem nenhum tratamento; 2) ALA - células incubadas com 5-ALA (1mM durante 4 horas); 3) LED - tratadas com iluminação LED (630nm, 5,86J/cm2, 22,5J, 150mW, 150s); 4) PDT - tratadas com 5- ALA-PDT, com os protocolos do grupo ALA e LED combinados, gerando dose letal de 90%. Inicialmente foi realizado somente um ciclo de PDT, sendo avaliada a viabilidade celular em todos os grupos após 24, 48, 72 e 120h da irradiação. Também foi realizado ensaio de detecção da fragmentação de DNA (TUNEL) e análise por imunofluorescência da expressão das proteínas NF?B, Bcl-2, iNOS, pmTOR e pAkt nas células viáveis. Como resultado desse primeiro tratamento com 5-ALA-PDT, observou-se que as células sobreviventes ao tratamento apresentaram intensa marcação para pmTOR e exibiram potencial de crescimento durante o período analisado. Após esses ensaios, as células que sobreviveram a essa primeira sessão foram coletadas, replaqueadas e novamente cultivadas, sendo então submetidas a novo ciclo de 5-ALA-PDT. Esse processo foi realizado 5 vezes, variando-se a intensidade de irradiação à medida que se observava aumento na viabilidade celular. As populações celulares que exibiram viabilidade 1,5 vezes maior do que a detectada no primeiro ciclo PDT foram consideradas resistentes ao tratamento. Os mesmos marcadores analisados no primeiro ciclo de PDT foram novamente avaliados nas populações resistentes. Foram obtidas quatro populações celulares resistentes, com viabilidade de até 4,6 vezes maior do que a do primeiro ciclo de PDT e irradiação com LED que variou de 5,86 a 9,38J/cm2. A população mais resistente apresentou ainda menor intensidade de protoporfirina IX, maior capacidade de migração e modificação na morfologia nuclear. As populações resistentes testadas exibiram aumento na expressão de pNF?B, iNOS, pmTOR e pAkt, mas não da proteína anti-apoptótica Bcl- 2. Ensaio in vivo foi também conduzido em ratos, nos quais CEC bucal foi quimicamente induzido e tratado ou não com 5-ALA-PDT. Houve intensa expressão imuno-histoquímica das proteínas pNF?B, Bcl-2, iNOS, pmTOR e pAkt em relação ao controle não tratado, nas células adjacentes à área de necrose provocada pela PDT. Concluiu-se que as células de CEC bucal tratadas com 5-ALA-PDT a uma dose de 90% de letalidade desenvolveram viabilidade crescente após ciclos repetidos do tratamento, bem como exibiram superexpressão de proteínas relacionadas à sobrevivência celular, tanto in vitro quanto in vivo. Esses fatos, aliados à maior capacidade de migração, sugerem a aquisição de fenótipo de resistência à 5-ALAPDT. Esse aspecto deve ser cuidadosamente considerado no momento da instituição dessa terapia para os CECs bucais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our group has pioneered the development of a live-attenuated poliovirus, called PVSRIPO, for the purpose of targeting cancer. Despite clinical progress, the cancer selective cytotoxicity and immunotherapeutic potential of PVSRIPO has not yet been mechanistically dissected. Defining such mechanisms may inform its clinical application.

Herein I describe the discovery of a mechanism by which the MAP-Kinase Interacting Kinases (MNKs) regulate PVSRIPO cytotoxicity in cancer. In doing so, I delineate a novel, intricate network connecting the MNK and mTOR signaling pathway that regulates activity of a splicing kinase called the Ser-Arg Rich Protein Kinase (SRPK), and define SRPK as an impediment to IRES mediated translation. Moreover, I demonstrate that MNK regulates mTORC1 associations that determine its substrate proximity and thus, activity. In a collaborative effort, we found that PVSRIPO oncolysis produces antigen specific, cytolytic anti-tumor immunity in an in vitro human system and that much of the observed adjuvancy is due to the direct infection of dendritic cells (DCs) by the virus itself; implicating PVSRIPO as a potent adjuvant. In summary, oncogenic signaling in part through MNK leads to cancer specific cytotoxicity by PVSRIPO that engages an inflammatory environment conducive to DC activation and antigen specific T cell antigen immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancers and plays an important role in small cell lung cancer (SCLC) biology. We investigated the potential of targeting mTOR signaling as a novel antitumor approach in SCLC. EXPERIMENTAL DESIGN: The expression of mTOR in patient specimens and in a panel of SCLC cell lines was analyzed. The effects on SCLC cell survival and downstream signaling were determined following mTOR inhibition by the rapamycin derivative RAD001 (Everolimus) or down-regulation by small interfering RNA. RESULTS: We found elevated expression of mTOR in patient specimens and SCLC cell lines, compared with normal lung tissue and normal lung epithelial cells. RAD001 treatment impaired basal and growth factor-stimulated cell growth in a panel of SCLC cell lines. Cells with increased Akt pathway activation were more sensitive to RAD001. Accordingly, a constitutive activation of the Akt/mTOR pathway was sufficient to sensitize resistant SCLC cells to the cytotoxic effect of RAD001. In the sensitive cells, RAD001 showed a strong additive effect to the proapoptotic action of the chemotherapeutic agent etoposide. Intriguingly, we observed low Bcl-2 family proteins levels in the SCLC cells with a constitutive Akt pathway activation, whereas an increased expression was detected in the RAD001-resistant SCLC cells. An antisense construct targeting Bcl-2 or a Bcl-2-specific inhibitor was able to sensitize resistant SCLC cells to RAD001. Moreover, SCLC tumor growth in vivo was significantly inhibited by RAD001. CONCLUSION: Together, our data show that inhibiting mTOR signaling with RAD001 potently disrupts growth and survival signaling in human SCLC cells.