881 resultados para low-heating-rate sintering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effect of both the mixing technique and heating rate during cure on the dispersion of montmorillonite (MMT) clay in an epoxy resin. The combination of sonication and using a 10. °C/min heating rate during cure was found to facilitate the dispersion of nanoclay in epoxy resin. These processing conditions provided a synergistic effect, making it possible for polymer chains to penetrate in-between clay galleries and detach platelets from their agglomerates. As the degree of dispersion was enhanced, the flexural modulus and strength properties were found to decrease by 15% and 40%, respectively. This is thought to be due to individual platelets fracturing in the nanocomposite. Complementary techniques including X-ray diffraction (XRD), small angle X-ray scattering (SAXS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and optical microscopy were essential to fully characterise localised and spatial regions of the clay morphologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the hot working of austenitic stainless steels the shape of the flow curve is strongly influenced by the strain rate. Low strain rate deformation results in flow curves typical of dynamic recrystallization (DRX) but as the strain rate increases the shape changes to a ‘flat-top’ curve. This has traditionally been thought to indicate no DRX is taking place and that dynamic recovery (DRV) is the only operating softening mechanism. Examining the work-hardening behaviour and corresponding deformation microstructures showed this is not the case for austenitic stainless steel, as clear evidence of dynamic recrystallization process can be seen. The post-deformation recrystallization kinetics can be modelled using a standard Avrami equation with an Avrami exponent, n, of 1.15. With an increasing value of the Zener-Hollomon parameter it was found that the kinetics of recrystallization become less strain rate sensitive until at the highest values (highest strain rates/lowest temperatures) the recrystallization kinetics become strain rate insensitive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work shows a contribution to the studies of development and solid sinterization of a metallic matrix composite MMC that has as starter materials 316L stainless steel atomized with water, and two different Tantalum Carbide TaC powders, with averages crystallite sizes of 13.78 nm and 40.66 nm. Aiming the metallic matrix s density and hardness increase was added different nanometric sizes of TaC by dispersion. The 316L stainless steel is an alloy largely used because it s high resistance to corrosion property. Although, its application is limited by the low wear resistance, consequence of its low hardness. Besides this, it shows low sinterability and it cannot be hardened by thermal treatments traditional methods because of the austenitic structure, face centered cubic, stabilized mainly in nickel presence. Steel samples added with TaC 3% wt (each sample with different type of carbide), following a mechanical milling route using conventional mill for 24 hours. Each one of the resulted samples, as well as the pure steel sample, were compacted at 700 MPa, room temperature, without any addictive, uniaxial tension, using a 5 mm diameter cylindrical mold, and quantity calculated to obtain compacted final average height of 5 mm. Subsequently, were sintered in vacuum atmosphere, temperature of 1290ºC, heating rate of 20ºC/min, using different soaking times of 30 and 60 min and cooled at room temperature. The sintered samples were submitted to density and micro-hardness analysis. The TaC reforced samples showed higher density values and an expressive hardness increase. The complementary analysis in optical microscope, scanning electronic microscope and X ray diffractometer, showed that the TaC, processed form, contributed with the hardness increase, by densification, itself hardness and grains growth control at the metallic matrix, segregating itself to the grain boarders

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents a hybrid ceramic block the use of which reside in the buildings executed with walls. Initially, we conducted a survey on the requirements and / or norms prevailing in Brazil about structural ceramic blocks, making use of the experiences in other countries. This work seeks new materials and / or products in order to maintain or increase the compressive strength of the ceramic blocks, without neglecting the other properties. Then was collected materials (clay and crushed powder) and an approach on the characterization, through fluorescence, Mineralogy, vitrification curve and characterization of these materials used in the manufacture of the blocks by Ray Diffraction "X" and SEM. Subsequently it was made, numbered and measured dimensions of about 150 bodies of the test piece (hybrid ceramic blocks in small sizes) with varying percentages of 0%, 5%, 10% and 15% substitution of crushed clay powder. After sintering of the bodies of the test piece at temperatures of 900oC, 1000oC 1100oC and with a heating rate of 5oC/minuto and level of 1 hour, the samples were submitted to the tests (compressive strength and water absorption) and calculated their retractions, which were subsequently carried out the analysis of the results according to the criteria and parameters required by Brazilian legislation and standards in force

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research studies the sintering of ferritic steel chips from the machining process. Were sintered metal powder obtained from machining process chips for face milling of a ferritic steel. The chip was produced by machining and characterized by SEM and EDS, and underwent a process of high energy mill powder characterized also by SEM and EDS. Were constructed three types of matrixes for uniaxial compression (relation l / d greater than 2.5). The differences in the design of the matrixes were essentially in the direction of load application, which for cylindrical case axial direction, while for the rectangular arrays, the longer side. Two samples were compressed with different geometries, a cylindrical and rectangular with the same compaction pressure of 700 MPa. The samples were sintered in a vacuum resistive furnace, heating rate 20 °C / min., isotherm 1300 °C for 60 minutes, and cooling rate of 25 °C / min to room temperature. The starting material of the rectangular sample was further annealed up to temperature of 800 ° C for 30 min. Sintered samples were characterized by scanning electron microscopy, optical microscopy and EDS. The sample compressed in the cylindrical matrix did not show a regular density reflecting in the sintered microstructure revealed by the irregular geometry of the pores, characterizing that the sintering was not complete, reaching only the second phase. As for the specimen compacted in the rectangular array, the analysis performed by scanning electron microscopy, optical microscopy and EDS indicate a good densification, and homogeneous microstructure in their full extent. Additionally, the EDS analyzes indicate no significant changes in chemical composition in the process steps. Therefore, it is concluded that recycling of chips, from the processed ferritic steel is feasible by the powder metallurgy. It makes possible rationalize raw material and energy by manufacture of known properties components from chips generated by the machining process, being benefits to the environment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The red pottery industry in Piauí state is well developed and stands out at the national context for the technical quality of its products. The floor and wall tile industry, however, is little developed since the state has only one company that produces red clay-based ceramic tiles. This thesis aims at using the predominantly illitic basic mass of the above mentioned industry, with the addition of feldspar and/or kaolin residue in order to obtain products of higher technical quality. Kaolin residue consists basically of kaolinite, muscovite mica and quartz; the feldspar used was potassic. In this experiment, basic mass (MB) was used for experimental control and fifteen formulations codified as follows: F2, F4, F8, F16, F32, FR2, FR4, FR8, FR16, FR32, R2, R4, R8, R16 and R32. All raw materials were dry-milled, classified, formulated and then humidified to 10% water. Thereafter, test samples were produced by unixial pressing process in a rectangular steel matrix (60.0 x 20.0 x 5.0) mm3 at (25 MPa). They were fired at four temperatures: 1080°C, 1120°C, 1160°C, with a heating rate of 10°C/min during up to 10 min in an electric oven, and the last one in an industrial oven with a peak of 1140°C, aim ing to confirm the results found in laboratory and, finally, technological tests were performed: MEA, RL, AA, PA, TRF and PF. The results revealed that the residue under study can be considered a raw material with large potential in the industry of red clay-based ceramic tiles, since the results found both in laboratory and in the industry have shown that the test samples produced from the formulations with up to 4% feldspar and those produced with up to 8% feldspar and residue permitted a reduction in the water absorption rate and an increase in the mechanical resistance while those samples produced with up to 4% residue had an increase in the mechanical resistance when compared to those produced from the basic mass and that the formulation with 2% feldspar and residue presented the best technological properties, lowering the sintering temperature down to 1120°C

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbide reinforced metallic alloys potentially improve some important mechanical properties required for the overall use of important engineering materials such as steel and nickel. Nevertheless, improved performance is achieved not only by composition enhancement but also by adequate processing techniques, such as novel sintering methods in the case of powder metallurgy. The method minimizes energy losses in addition to providing uniform heating during sintering. Thus, the general objective of this study was to evaluate the density, hardness, flexural strength, dilatometric behavior and to analyze the microstructure of metal matrix composites based nickel with addition of carbides of tantalum and / or niobium when sintered in a conventional furnace and Plasma assisted debinding and sintering (PADS). Initially, were defineds best parameters of granulation, screening and mixing procedure. After, mixtures of carbonyl Ni and 5%, 10% and 15 wt.% NbC and TaC were prepared in a Y-type mixer under wet conditions during 60 minutes. The mixtures were then dried and granulated using 1.5 wt. % paraffin diluted in hexane. Granulates were cold pressed under 600 MPa. Paraffin was then removed from the pressed pellets during a pre-sintering process carried out in a tubular furnace at 500 °C during 30 min. The heating rate was 3 ºC/min. The pellets were then sintered using either a plasma assisted reactor or a conventional resistive tubular furnace. For both methods, the heating rate was set to 8 ºC/min up to 1150 °C. The holding time was 60 minutes. The microstructure of the sintered samples was evaluated by SEM. Brinell hardness tests were also carried out. The results revealed that higher density and higher hardness values were observed in the plasma-assisted sintered samples. Hardness increased with the concentration of carbides in the Ni-matrix. The flexural strength also increased by adding the carbides. The decline was larger for the sample with addition of 5% 5% TaC and NbC. In general, compositions containing added carbide 10% showed less porous and more uniform distribution of carbides in the nickel matrix microstructural appearance. Thus, both added carbide and plasma sintering improved density, hardness, flexural strength and microstructural appearance of the composites

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ti and its alloys have been used thoroughly in the production of prostheses and dental implants due to their properties, such as high corrosion resistance, low elasticity modulus and high mechanical strength/density relation. Among the Ti-based alloys, the Ti-35Nb-7Zr-5Ta (TNZT) is one that presents the smallest elasticity modulus, making it an excellent alternative to be used as a biomaterial. In this paper, mechanical spectroscopy measurements were made in TNZT alloys containing several quantities of oxygen and nitrogen in solid solution. Mechanical spectroscopy measurements were made by using a torsion pendulum, operating at an oscillation frequency in the interval 4-30 Hz, temperature in the range 100-700 K, heating rate of about 1 K/min and vacuum lower than 10(-5) Torr. Complex relaxation structures and a reduction in the elasticity modulus were observed for the heat-treated and doped samples. The observed peaks were associated with the interactions of interstitial atoms and the alloy elements. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low density silica sonogels were prepared from acid sonohydrolysis of tetraethoxysilane. Wet gels were studied by small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC tests were carried out under a heating rate of 2 degrees C/min from -120 degrees C up to 30 degrees C. Aerogels were obtained by CO(2) supercritical extraction and characterized by nitrogen adsorption and SAXS. The DSC thermogram displays two distinct endothermic peaks. The first, a broad peak extending from about -80 degrees C up to practically 0 degrees C, was associated to the melting of ice nanocrystals with a crystal size distribution with pore diameter ranging from 1 or 2 nm up to about 60 nm, as estimated from Thomson's equation. The second, a sharp peak with onset temperature close to 0 degrees C, was attributed to the melting of macroscopic crystals. The DSC incremental nanopore volume distribution is in reasonable agreement with the incremental pore volume distribution of the aerogel as determined from nitrogen adsorption. No macroporosity was detected by nitrogen adsorption, probably because the adsorption method applies stress on the sample during measurement, leading to a underestimation of pore volume, or because often positive curvature of the solid surface is in aerogels, making the nitrogen condensation more difficult. According to the SAXS results, the solid network of the wet gels behaves as a mass fractal structure with mass fractal dimension D=2.20 +/- 0.01 in a characteristic length scale below xi=7.9 +/- 0.1 nm. The mass fractal characteristics of the wet gels have also been probed from DSC data by means of an earlier applied modeling for generation of a mass fractal from the incremental pore volume distribution curves. The results are shown to be in interesting agreement with the results from SAXS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonisothermal study of the kinetics of the nanoporosity elimination in monolithic silica xerogels, prepared from acid and ultrasound catalyzed hydrolysis of tetraethylortosilicate (TEOS), has been carried out by means of in situ linear shrinkage measurements performed with different heating rates. The study could be applied up to almost alpha similar to 0.6 of the volume fraction alpha of eliminated pores. The activation energy was found increasing from about 3.2 x 10(2) kJ/mol for alpha similar to 0.06 up to about 4.4 x 10(2) kJ/mol for alpha. similar to 0.44. The sintering process accompanying the nanopore elimination in this set of xerogels is in agreement with a viscous flux sintering process with the hydroxyl content diminishing with the volume fraction of eliminated pores. All the volume fraction of eliminated pores versus temperature (T) curves can be matched onto a unique curve with an appropriate rescaling of the T axis, independent of the heating rate. This scaling property suggests that the path of sintering seems the same, regardless of the heating rate; the difference is that the rate is faster at higher temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A powder mixture of BaO and TiO2, was mechanochemically treated in a planetary ball mill in an air atmosphere for up to 4 h, using zirconium oxide vial and zirconium oxide balls as the milling medium. Mechanochemical reaction leads to the gradual formation of BaTiO3 phase. Phase evolution during synthesis and changes in powder size and morphology were monitored by XRD, DSC, IR and TEM analysis and it was shown that the formation of BaTiO3 phase was initiated after 60 min. Extended time of milling directed to formation of higher amount of BaTiO3 perovskite phase. Barium titanate with good crystallinity was formed after 240 min sintering without pre-calcination step was performed at 1330 degrees C for 2 It within heating rate 10 degrees C/min. (c) 2005 Elsevier Ltd. All rights reserved.