913 resultados para livskvalitet och fatigue. Multiple Sclerosis
Resumo:
Although multiple sclerosis (MS) is recognized as a disorder involving the immune system, the interplay of environmental factors and individual genetic susceptibility seems to influence MS onset and clinical expression, as well as therapeutic responsiveness. Multiple human epidemiological and animal model studies have evaluated the effect of different environmental factors, such as viral infections, vitamin intake, sun exposure, or still dietary and life habits on MS prevalence. Previous Epstein-Barr virus infection, especially if this infection occurs in late childhood, and lack of vitamin D (VitD) currently appear to be the most robust environmental factors for the risk of MS, at least from an epidemiological standpoint. Ultraviolet radiation (UVR) activates VitD production but there are also some elements supporting the fact that insufficient UVR exposure during childhood may represent a VitD-independent risk factor of MS development, as well as negative effect on the clinical and radiological course of MS. Recently, there has been a growing interest in the gut-brain axis, a bidirectional neuro-hormonal communication system between the intestinal microbiota and the central nervous system (CNS). Indeed, components of the intestinal microbiota may be pro-inflammatory, promote the migration of immune cells into the CNS, and thus be a key parameter for the development of autoimmune disorders such as MS. Interestingly most environmental factors seem to play a role during childhood. Thus, if childhood is the most fragile period to develop MS later in life, preventive measures should be applied early in life. For example, adopting a diet enriched in VitD, playing outdoor and avoiding passive smoking would be extremely simple measures of primary prevention for public health strategies. However, these hypotheses need to be confirmed by prospective evaluations, which are obviously difficult to conduct. In addition, it remains to be determined whether and how VitD supplementation in adult life would be useful in alleviating the course of MS, once this disease has already started. A better knowledge of the influence of various environmental stimuli on MS risk and course would certainly allow the development of add-on therapies or measures in parallel to the immunotherapies currently used in MS.
Resumo:
INTRODUCTION: Malignant variant is a rare subtype of multiple sclerosis (MS) that is rapidly progressive and may lead to significant disability or even death. No consensus exists on best management of this disorder, although corticosteroids and plasmapheresis are commonly used in the acute phase, followed either by MS-specific disease-modifying therapy or an immunosuppressant. CASE REPORT: The patient is a 30-year-old man with relapsing-remitting MS previously well controlled with natalizumab, who has developed fulminant disease activity upon natalizumab cessation. In the acute phase, patient had a suboptimal response to multiple corticosteroid treatments but responded very well to plasmapheresis. Patient continued to have worsening disease activity despite fingolimod treatment. Disease control has been eventually achieved by switching to rituximab. CONCLUSION: Rituximab treatment should be considered for a patient with fulminant MS who responded well to plasmapheresis.
Resumo:
The underlying cause of many human autoimmune diseases is unknown, but several environmental factors are implicated in triggering the self-destructive immune reactions. Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system, potentially leading to persistent neurological deterioration. The cause of MS is not known, and apart from immunomodulatory treatments there is no cure. In the early phase of the disease, relapsing-remitting MS (RR-MS) is characterized by unpredictable exacerbations of the neurological symptoms called relapses, which can occur at different intervals ranging from 4 weeks to several years. Microbial infections are known to be able to trigger MS relapses, and the patients are instructed to avoid all factors that might increase the risk of infections and to properly use antibiotics as well as to take care of dental hygiene. Among those environmental factors which are known to increase susceptibility to infections, high ambient air inhalable particulate matter levels affect all people within a geographical region. During the period of interest in this thesis, the occurrence of MS relapses could be effectively reduced by injections of interferon, which has immunomodulatory and antiviral properties. In this thesis, ecological and epidemiological analyses were used to study the possible connection between MS relapse occurrence, population level viral infections and air quality factors, as well as the effects of interferon medication. Hospital archive data were collected retrospectively from 1986-2001, a period in time ranging from when interferon medication first became available until just before other disease-modifying MS therapies arrived on the market. The grouped data were studied with logistic regression and intervention analysis, and individual patient data with survival analysis. Interferons proved to be effective in the treatment of MS in this observational study, as the amount of MS exacerbations was lower during interferon use as compared to the time before interferon treatment. A statistically significant temporal relationship between MS relapses and inhalable particular matter (PM10) concentrations was found in this study, which implies that MS patients are affected by the exposure to PM10. Interferon probably protected against the effect of PM10, because a significant increase in the risk of exacerbations was only observed in MS patients without interferon medication following environmental exposure to population level specific viral infections and PM10. Apart from being antiviral, interferon could thus also attenuate the enhancement of immune reactions caused by ambient air PM10. The retrospective approach utilizing carefully constructed hospital records proved to be an economical and reliable source of MS disease information for statistical analyses.
Resumo:
Multiple sclerosis (MS) is a chronic immune-mediated inflammatory disorder of the central nervous system. MS is the most common disabling central nervous system (CNS) disease of young adults in the Western world. In Finland, the prevalence of MS ranges between 1/1000 and 2/1000 in different areas. Fabry disease (FD) is a rare hereditary metabolic disease due to mutation in a single gene coding α-galactosidase A (alpha-gal A) enzyme. It leads to multi-organ pathology, including cerebrovascular disease. Currently there are 44 patients with diagnosed FD in Finland. Magnetic resonance imaging (MRI) is commonly used in the diagnostics and follow-up of these diseases. The disease activity can be demonstrated by occurrence of new or Gadolinium (Gd)-enhancing lesions in routine studies. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced MR sequences which can reveal pathologies in brain regions which appear normal on conventional MR images in several CNS diseases. The main focus in this study was to reveal whether whole brain apparent diffusion coefficient (ADC) analysis can be used to demonstrate MS disease activity. MS patients were investigated before and after delivery and before and after initiation of diseasemodifying treatment (DMT). In FD, DTI was used to reveal possible microstructural alterations at early timepoints when excessive signs of cerebrovascular disease are not yet visible in conventional MR sequences. Our clinical and MRI findings at 1.5T indicated that post-partum activation of the disease is an early and common phenomenon amongst mothers with MS. MRI seems to be a more sensitive method for assessing MS disease activity than the recording of relapses. However, whole brain ADC histogram analysis is of limited value in the follow-up of inflammatory conditions in a pregnancy-related setting because the pregnancy-related physiological effects on ADC overwhelm the alterations in ADC associated with MS pathology in brain tissue areas which appear normal on conventional MRI sequences. DTI reveals signs of microstructural damage in brain white matter of FD patients before excessive white matter lesion load can be observed on conventional MR scans. DTI could offer a valuable tool for monitoring the possible effects of enzyme replacement therapy in FD.
Resumo:
Background: Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system that affects most commonly young women in their childbearing age. Previous studies have shown that MS relapse rate usually reduces during pregnancy and increases again after delivery. Patients with MS and their treating physicians are interested to know more about the risks the disease can cause to pregnancy and how pregnancy affects the disease. The reasons for increased relapse rate after delivery are not entirely clear, but loss of pregnancy related immune tolerance and changes in the hormonal status at the time of delivery seem to be of relevance. Aims and methods: The aims of this study were to follow the natural course of MS during and after pregnancy, evaluate pregnancy related risks among MS patients, follow the inflammatory response of MS patients during and after pregnancy and clarify the risk of relevant co-morbidities known to affect other autoimmune diseases after pregnancy and compare these results to healthy controls. This study was a part of a prospective nation-wide follow-up study of 60 Finnish MS patients. All eligible MS patients were enrolled in the study during the years 2003-2005. A prospective followup continued from early pregnancy until six months postpartum. MS relapses, EDSS scores and obstetric details were recorded. Blood samples were obtained from the patients at early, middle, and late pregnancy, after delivery and one month, three months and six months postpartum. Results: MS patients were no more likely to experience pregnancy or delivery complications than the Finnish mothers in general. The need of instrumental assistance, however, was higher among mothers with MS. Disease activity followed the course seen in previous studies. The majority of mothers (90.2%) breastfed their babies. Contrary to previous results, breastfeeding did not protect MS patients from disease worsening after delivery in present study. Mothers with active pre-pregnancy disease chose to breastfeed less frequently and started medication instead. MS patients presented with higher prevalence of elevated thyroid autoantibodies postpartum than healthy controls, but the rate of thyroid hormonal dysfunction was similar as that of healthy controls. The mode of delivery nor the higher rate of tissue damage assessed with C-reactive protein concentration were not predictive of postpartum relapses. The prevalence of gestational diabetes was slightly higher among mothers with MS compared to Finnish mothers in general, but postpartum depression was observed in similar rates. MS patients presented with significantly lower serum concentrations of vitamin D during pregnancy and postpartum than healthy controls. Conclusions: Childbearing can be regarded as safe for mothers with MS as it is for healthy mothers in general. Breastfeeding can be recommended, but it should be done only after careful evaluation of the individual risk for postpartum disease activation. Considering MS patients tend to develop thyroid antibody positivity after delivery more often than healthy controls and that certain treatments can predispose MS patients to thyroid hormonal dysfunction, we recommend MS mothers to be screened for thyroid abnormalities during pregnancy and after delivery. Increased risk for gestational diabetes should be kept in mind when following MS mothers and glucose tolerance test in early pregnancy should be considered. Adequate vitamin D supplementation is essential for MS mothers also during pregnancy and postpartum period.
Resumo:
Extracellular matrix (ECM) molecules play important roles in the pathobiology of the major human central nervous system (CNS) inflammatory/demyelinating disease multiple sclerosis (MS). This mini-review highlights some recent work on CNS endothelial cell interactions with vascular basement membrane ECM as part of the cellular immune response, and roles for white matter ECM molecules in demyelination and remyelination in MS lesions. Recent basic and clinical investigations of MS emphasize axonal injury, not only in chronic MS plaques, but also in acute lesions; progressive axonal degeneration in normal-appearing white matter also may contribute to brain and spinal cord atrophy in MS patients. Remodeling of the interstitial white matter ECM molecules that affect axon regeneration, however, is incompletely characterized. Our ongoing immunohistochemical studies demonstrate enhanced ECM versican, a neurite and axon growth-inhibiting white matter ECM proteoglycan, and dermatan sulfate proteoglycans at the edges of inflammatory MS lesions. This suggests that enhanced proteoglycan deposition in the ECM and axonal growth inhibition may occur early and are involved in expansion of active lesions. Decreased ECM proteoglycans and their phagocytosis by macrophages along with myelin in plaque centers imply that there is "injury" to the ECM itself. These results indicate that white matter ECM proteoglycan alterations are integral to MS pathology at all disease stages and that they contribute to a CNS ECM that is inhospitable to axon regrowth/regeneration.
Resumo:
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the human central nervous system. Although its etiology is unknown, the accumulation and activation of mononuclear cells in the central nervous system are crucial to its pathogenesis. Chemokines have been proposed to play a major role in the recruitment and activation of leukocytes in inflammatory sites. They are divided into subfamilies on the basis of the location of conserved cysteine residues. We determined the levels of some CC and CXC chemokines in the cerebrospinal fluid (CSF) of 23 relapsing-remitting MS patients under interferon-ß-1a therapy and 16 control subjects using ELISA. MS patients were categorized as having active or stable disease. CXCL10 was significantly increased in the CSF of active MS patients (mean ± SEM, 369.5 ± 69.3 pg/mL) when compared with controls (178.5 ± 29.1 pg/mL, P < 0.05). CSF levels of CCL2 were significantly lower in active MS (144.7 ± 14.4 pg/mL) than in controls (237.1 ± 16.4 pg/mL, P < 0.01). There was no difference in the concentration of CCL2 and CXCL10 between patients with stable MS and controls. CCL5 was not detectable in the CSF of most patients or controls. The qualitative and quantitative differences of chemokines in CSF during relapses of MS suggest that they may be useful as a marker of disease activity and of the mechanisms involved in the pathogenesis of the disease.
Resumo:
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system CNS), where inflammation and neurodegeneration lead to irreversible neuronal damage. In MS, a dysfunctional immune system causes auto‐reactive lymphocytes to migrate into CNS where they initiate an inflammatory cascade leading to focal demyelination, axonal degeneration and neuronal loss. One of the hallmarks of neuronal injury and neuroinflammation is the activation of microglia. Activated microglia are found not only in the focal inflammatory lesions, but also diffusely in the normal‐appearing white matter (NAWM), especially in progressive MS. The purine base, adenosine is a ubiquitous neuromodulator in the CNS and also participates in the regulation of inflammation. The effect of adenosine mediated via adenosine A2A receptors has been linked to microglial activation, whereas modulating A2A receptors may exert neuroprotective effects. In the majority of patients, MS presents with a relapsing disease course, later advancing to a progressive phase characterised by a worsening, irreversible disability. Disease modifying treatments can reduce the severity and progression in relapsing MS, but no efficient treatment exists for progressive MS. The aim of this research was to investigate the prevalence of adenosine A2A receptors and activated microglia in progressive MS by using in vivo positron emission tomography (PET) imaging and [11C]TMSX and [11C](R)‐PK11195 radioligands. Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed to evaluate structural brain damage. Non‐invasive input function methods were also developed for the analyses of [11C]TMSX PET data. Finally, histopathological correlates of [11C](R)‐PK11195 radioligand binding related to chronic MS lesions were investigated in post‐mortem samples of progressive MS brain using autoradiography and immunohistochemistry. [11C]TMSX binding to A2A receptors was increased in NAWM of secondary progressive MS (SPMS) patients when compared to healthy controls, and this correlated to more severe atrophy in MRI and white matter disintegration (reduced fractional anisotropy, FA) in DTI. The non‐invasive input function methods appeared as feasible options for brain [11C]TMSX images obviating arterial blood sampling. [11C](R)‐PK11195 uptake was increased in the NAWM of SPMS patients when compared to patients with relapsing MS and healthy controls. Higher [11C](R)‐PK11195 binding in NAWM and total perilesional area of T1 hypointense lesions was associated with more severe clinical disability, increased brain atrophy, higher lesion load and reduced FA in NAWM in the MS patients. In autoradiography, increased perilesional [11C](R)‐PK11195 uptake was associated with increased microglial activation identified using immunohistochemistry. In conclusion, brain [11C]TMSX PET imaging holds promise in the evaluation of diffuse neuroinflammation in progressive MS. Being a marker of microglial activation, [11C](R)‐ PK11195 PET imaging could possibly be used as a surrogate biomarker in the evaluation of the neuroinflammatory burden and clinical disease severity in progressive MS.
Resumo:
This paper analyzes the profile of the Brazilian output in the field of multiple sclerosis from 1981 to 2004. The search was conducted through the MEDLINE and LILACS databases, selecting papers in which the term "multiple sclerosis" was defined as the main topic and "Brazil" or "Brasil" as others. The data were analyzed regarding the themes, the state in Brazil and institution where the papers were produced, the journals where the papers were published, journal's impact factor, and language. The search disclosed 141 documents (91 from MEDLINE and LILACS, and 50 from LILACS only) published in 44 different journals (23 of them MEDLINE-indexed). A total of 111 documents were produced by 17 public universities, 29 by 3 private medical schools and 1 by a non-governmental organization. There were 65 original contributions, 37 case reports, 20 reviews, 6 PhD dissertations, 5 guidelines, 2 validation studies, 2 clinical trials, 2 chapters in textbooks, 1 Master of Science thesis, and 1 patient education handout. The journal impact factor ranged from 0.0217 to 6.039 (median 3.03). Of 91 papers from MEDLINE, 65 were published by Arquivos de Neuro-Psiquiatria. More than 90% of the papers were written in Portuguese. São Paulo was the most productive state in the country, followed by Rio de Janeiro, Minas Gerais and Paraná. Eighty-two percent of the Brazilian output came from the Southeastern region.
Resumo:
The immunomodulador glatiramer acetate (GA) has been shown to significantly reduce the severity of symptoms during the course of multiple sclerosis and in its animal model - experimental autoimmune encephalomyelitis (EAE). Since GA may influence the response of non-neuronal cells in the spinal cord, it is possible that, to some extent, this drug affects the synaptic changes induced during the exacerbation of EAE. In the present study, we investigated whether GA has a positive influence on the loss of inputs to the motoneurons during the course of EAE in rats. Lewis rats were subjected to EAE associated with GA or placebo treatment. The animals were sacrificed after 15 days of treatment and the spinal cords processed for immunohistochemical analysis and transmission electron microscopy. A correlation between the synaptic changes and glial activation was obtained by performing labeling of synaptophysin and glial fibrillary acidic protein using immunohistochemical analysis. Ultrastructural analysis of the terminals apposed to alpha motoneurons was also performed by electron transmission microscopy. Interestingly, although the GA treatment preserved synaptophysin labeling, it did not significantly reduce the glial reaction, indicating that inflammatory activity was still present. Also, ultrastructural analysis showed that GA treatment significantly prevented retraction of both F and S type terminals compared to placebo. The present results indicate that the immunomodulator GA has an influence on the stability of nerve terminals in the spinal cord, which in turn may contribute to its neuroprotective effects during the course of multiple sclerosis.
Resumo:
The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.
Resumo:
The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.