971 resultados para linear measurements
Resumo:
LLDPE was blended with poly (vinyl alcohol) and mechanical, thermal, spectroscopic properties and biodegradability were investigated. The biodegradability of LLDPE/PVA blends has been studied in two environments, viz. (1) a culture medium containing Vibrio sp. and (2) a soil environment over a period of 15 weeks. Nanoanatase having photo catalytic activity was synthesized by hydrothermal method using titanium-iso-propoxide. The synthesized TiO2 was characterized by X-Ray diffraction (XRD), BET studies, FTIR studies and scanning electron microscopy (SEM). The crystallite size of titania was calculated to be ≈ 6nm from the XRD results and the surface area was found to be about 310m2/g by BET method. SEM shows that nanoanatase particles prepared by this method are spherical in shape. Linear low density polyethylene films containing polyvinyl alcohol and a pro-oxidant (TiO2 or cobalt stearate with or without vegetable oil) were prepared. The films were then subjected to natural weathering and UV exposure followed by biodegradation in culture medium as well as in soil environment. The degradation was monitored by mechanical property measurements, thermal studies, rate of weight loss, FTIR and SEM studies. Higher weight loss, texture change and greater increments in carbonyl index values were observed in samples containing cobalt stearate and vegetable oil. The present study demonstrates that the combination of LLDPE/PVA blends with (I) nanoanatase/vegetable oil and (ii) cobalt stearate/vegetable oil leads to extensive photodegradation. These samples show substantial degradation when subsequent exposure to Vibrio sp. is made. Thus a combined photodegradation and biodegradation process is a promising step towards obtaining a biodegradable grade of LLDPE.
Resumo:
RMS measuring device is a nonlinear device consisting of linear and nonlinear devices. The performance of rms measurement is influenced by a number of factors; i) signal characteristics, 2) the measurement technique used and 3) the device characteristics. RMS measurement is not simple, particularly when the signals are complex and unknown. The problem of rms measurement on high crest-factor signals is fully discussed and a solution to this problem is presented in this thesis. The problem of rms measurement is systematically analized and found to have mainly three types of errors: (1) amplitude or waveform error 2) Frequency error and (3) averaging error. Various rms measurement techniques are studied and compared. On the basis of this study the rms -measurement is reclassified three categories: (1) Wave-form-error-free measurement (2) High-frequncy-error measurement and (3) Low-frequency error-free measurement. In modern digital sampled-data systems the signals are complex and waveform-error-free rms measurement is highly appreciated. Among the three basic blocks of rms measuring device the squarer is the most important one. A squaring technique is selected, that permits shaping of the squarer error characteristic in such a way as to achieve waveform-errob free rms measurement. The squarer is designed, fabricated and tested. A hybrid rms measurement using an analog rms computing device and digital display combines the speed of analog techniques and the resolution and ease of measurement of digital techniques. An A/D converter is modified to perform the square-rooting operation. A 10-V rms voltmeter using the developed rms detector is fabricated and tested. The chapters two, three and four analyse the problems involved in rms measurement and present a comparative study of rms computing techniques and devices. The fifth chapter gives the details of the developed rms detector that permits wave-form-error free rms measurement. The sixth chapter, enumerates the the highlights of the thesis and suggests a list of future projects
Resumo:
The effect of frequency, composition and temperature on the a.c. electrical conductivity were studied for the ceramic, Ni1–xZnxFe2O4, as well as the filler (Ni1–xZnxFe2O4) incorporated rubber ferrite composites (RFCs). Ni1–xZnxFe2O4 (where x varies from 0 to 1 in steps of 0×2) were prepared by usual ceramic techniques. They were then incorporated into a butyl rubber matrix according to a specific recipe. The a.c. electrical conductivity (sa.c.) calculations were carried out by using the data available from dielectric measurements and by employing a simple relationship. The a.c. conductivity values were found to be of the order of 10–3 S/m. Analysis of the results shows that sa.c. increases with increase of frequency and the change is same for both ceramic Ni1–xZnxFe2O4 and RFCs. sa.c. increases initially with the increase of zinc content and then decreases with increase of zinc. Same behaviour is observed for RFCs too. The dependence of sa.c. on the volume fraction of the magnetic filler was also studied and it was found that the a.c. conductivity of RFCs increases with increase of volume fraction of the magnetic filler. Temperature dependence of conductivity was studied for both ceramic and rubber ferrite composites. Conductivity shows a linear dependence with temperature in the case of ceramic samples
Resumo:
Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.
Resumo:
Polydimethylsiloxane (PDMS) is the elastomer of choice to create a variety of microfluidic devices by soft lithography techniques (eg., [1], [2], [3], [4]). Accurate and reliable design, manufacture, and operation of microfluidic devices made from PDMS, require a detailed characterization of the deformation and failure behavior of the material. This paper discusses progress in a recently-initiated research project towards this goal. We have conducted large-deformation tension and compression experiments on traditional macroscale specimens, as well as microscale tension experiments on thin-film (≈ 50µm thickness) specimens of PDMS with varying ratios of monomer:curing agent (5:1, 10:1, 20:1). We find that the stress-stretch response of these materials shows significant variability, even for nominally identically prepared specimens. A non-linear, large-deformation rubber-elasticity model [5], [6] is applied to represent the behavior of PDMS. The constitutive model has been implemented in a finite-element program [7] to aid the design of microfluidic devices made from this material. As a first attempt towards the goal of estimating the non-linear material parameters for PDMS from indentation experiments, we have conducted micro-indentation experiments using a spherical indenter-tip, and carried out corresponding numerical simulations to verify how well the numerically-predicted P(load-h(depth of indentation) curves compare with the corresponding experimental measurements. The results are encouraging, and show the possibility of estimating the material parameters for PDMS from relatively simple micro-indentation experiments, and corresponding numerical simulations.
Resumo:
The length and time scales accessible to optical tweezers make them an ideal tool for the examination of colloidal systems. Embedded high-refractive-index tracer particles in an index-matched hard sphere suspension provide 'handles' within the system to investigate the mechanical behaviour. Passive observations of the motion of a single probe particle give information about the linear response behaviour of the system, which can be linked to the macroscopic frequency-dependent viscous and elastic moduli of the suspension. Separate 'dragging' experiments allow observation of a sample's nonlinear response to an applied stress on a particle-by particle basis. Optical force measurements have given new data about the dynamics of phase transitions and particle interactions; an example in this study is the transition from liquid-like to solid-like behaviour, and the emergence of a yield stress and other effects attributable to nearest-neighbour caging effects. The forces needed to break such cages and the frequency of these cage breaking events are investigated in detail for systems close to the glass transition.
Resumo:
Much uncertainty in the value of the imaginary part of the refractive index of mineral dust contributes to uncertainty in the radiative effect of mineral dust in the atmosphere. A synthesis of optical, chemical and physical in-situ aircraft measurements from the DODO experiments during February and August 2006 are used to calculate the refractive index mineral dust encountered over West Africa. Radiative transfer modeling and measurements of broadband shortwave irradiance at a range of altitudes are used to test and validate these calculations for a specific dust event on 23 August 2006 over Mauritania. Two techniques are used to determine the refractive index: firstly a method combining measurements of scattering, absorption, size distributions and Mie code simulations, and secondly a method using composition measured on filter samples to apportion the content of internally mixed quartz, calcite and iron oxide-clay aggregates, where the iron oxide is represented by either hematite or goethite and clay by either illite or kaolinite. The imaginary part of the refractive index at 550 nm (ni550) is found to range between 0.0001 i to 0.0046 i, and where filter samples are available, agreement between methods is found depending on mineral combination assumed. The refractive indices are also found to agree well with AERONET data where comparisons are possible. ni550 is found to vary with dust source, which is investigated with the NAME model for each case. The relationship between both size distribution and ni550 on the accumulation mode single scattering albedo at 550 nm (ω0550) are examined and size distribution is found to have no correlation to ω0550, while ni550 shows a strong linear relationship with ω0550. Radiative transfer modeling was performed with different models (Mie-derived refractive indices, but also filter sampling composition assuming both internal and external mixing). Our calculations indicate that Mie-derived values of ni550 and the externally mixed dust where the iron oxide-clay aggregate corresponds to the goethite-kaolinite combination result in the best agreement with irradiance measurements. The radiative effect of the dust is found to be very sensitive to the mineral combination (and hence refractive index) assumed, and to whether the dust is assumed to be internally or externally mixed.
Resumo:
Three new linear trinuclear nickel(II) complexes, [Ni-3(salpen)(2)(OAc)(2)(H2O)(2)]center dot 4H(2)O (1) (OAc = acetate, CH3COO-), [Ni-3(salpen)(2)(OBz)(2)] (2) (OBz=benzoate, PhCOO-) and [Ni-3(salpen)(2)(OCn)(2)(CH3CN)(2)] (4) (OCn = cinnamate, PhCH=CHCOO-), H(2)salpen = tetradentate ligand, N,N'-bis(salicylidene)-1,3-pentanediamine have been synthesized and characterized structurally and magnetically. The choice of solvent for growing single crystal was made by inspecting the morphology of the initially obtained solids with the help of SEM study. The magnetic properties of a closely related complex, [Ni-3(salpen)(2)(OPh)(2)(EtOH)] (3) (OPh = phenyl acetate, PhCH2COO-) whose structure and solution properties have been reported recently, has also been studied here. The structural analyses reveal that both phenoxo and carboxylate bridging are present in all the complexes and the three Ni(II) atoms remain in linear disposition. Although the Schiff base ligand and the syn-syn bridging bidentate mode of the carboxylate group remain the same in complexes 1-4, the change of alkyl/aryl group of the carboxylates brings about systematic variations between six- and five-coordination in the geometry of the terminal Ni(II) centres of the trinuclear units. The steric demand as well as hydrophobic nature of the alkyl/aryl group of the carboxylate is found to play a crucial role in the tuning of the geometry. Variable-temperature (2-300 K) magnetic susceptibility measurements show that complexes 1-4 are antiferromagnetically coupled (J = -3.2(1), -4.6(1). -3.2(1) and -2.8(1) cm(-1) in 1-4, respectively). Calculations of the zero-field splitting parameter indicate that the values of D for complexes 1-4 are in the high range (D = +9.1(2), +14.2(2), +9.8(2) and +8.6(1) cm(-1) for 1-4, respectively). The highest D value of +14.2(2) and +9.8(2) cm(-1) for complexes 2 and 3, respectively, are consistent with the pentacoordinated geometry of the two terminal nickel(II) ions in 2 and one terminal nickel(II) ion in 3. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Crystallization must occur in honey in order to produce set or creamed honey; however, the process must occur in a controlled manner in order to obtain an acceptable product. As a consequence, reliable methods are needed to measure the crystal content of honey (φ expressed as kg crystal per kg honey), which can also be implemented with relative ease in industrial production facilities. Unfortunately, suitable methods do not currently exist. This article reports on the development of 2 independent offline methods to measure the crystal content in honey based on differential scanning calorimetry and high-performance liquid chromatography. The 2 methods gave highly consistent results on the basis of paired t-test involving 143 experimental points (P > 0.05, r**2 = 0.99). The crystal content also correlated with the relative viscosity, defined as the ratio of the viscosity of crystal containing honey to that of the same honey when all crystals are dissolved, giving the following correlation: μr = 1 + 1398.8∅**2.318. This correlation can be used to estimate the crystal content of honey in industrial production facilities. The crystal growth rate at a temperature of 14 ◦C—the normal crystallization temperature used in practice—was linear, and the growth rate also increased with the total glucose content in the honey.
Resumo:
The optically stimulated luminescence (OSL) from quartz is known to be the sum of several components with different rates of charge loss, originating from different trap types. The OSL components are clearly distinguished using the linear modulation (LM OSL) technique. A variety of pre-treatment and measurement conditions have been used on sedimentary samples in conjunction with linearly modulated optical stimulation to study in detail the behaviour of the OSL components of quartz. Single aliquots of different quartz samples have been found to contain typically five or six common LM OSL components when stimulated at View the MathML source. The components have been parameterised in terms of thermal stability (i.e. E and s), photoionisation cross-section energy dependence and dose response. The results of studies concerning applications of component-resolved LM OSL measurements on quartz are also presented. These include the detection of partial bleaching in young samples, use of ‘stepped wavelength’ stimulation to observe OSL from single components and attempts to extend the age range of quartz OSL dating.
Resumo:
Sixteen years (1994 – 2009) of ozone profiling by ozonesondes at Valentia Meteorological and Geophysical Observatory, Ireland (51.94° N, 10.23° W) along with a co-located MkIV Brewer spectrophotometer for the period 1993–2009 are analyzed. Simple and multiple linear regression methods are used to infer the recent trend, if any, in stratospheric column ozone over the station. The decadal trend from 1994 to 2010 is also calculated from the monthly mean data of Brewer and column ozone data derived from satellite observations. Both of these show a 1.5 % increase per decade during this period with an uncertainty of about ±0.25 %. Monthly mean data for March show a much stronger trend of ~ 4.8 % increase per decade for both ozonesonde and Brewer data. The ozone profile is divided between three vertical slots of 0–15 km, 15–26 km, and 26 km to the top of the atmosphere and a 11-year running average is calculated. Ozone values for the month of March only are observed to increase at each level with a maximum change of +9.2 ± 3.2 % per decade (between years 1994 and 2009) being observed in the vertical region from 15 to 26 km. In the tropospheric region from 0 to 15 km, the trend is positive but with a poor statistical significance. However, for the top level of above 26 km the trend is significantly positive at about 4 % per decade. The March integrated ozonesonde column ozone during this period is found to increase at a rate of ~6.6 % per decade compared with the Brewer and satellite positive trends of ~5 % per decade.
Resumo:
The present work reports on the thermo-optical properties of photorefractive sillenite Bi(12)SiO(20) (BSO) crystals obtained by applying the Thermal Lens Spectrometry technique (TLS). This crystals presents one high photorefractive sensitivity in the region blue-green spectra, since the measurements were carried out at two pump beam wavelengths (514.5 nm and 750 nm) to study of the light-induced effects in this material (thermal and/or photorefractive). We determine thermo-optical parameters like thermal diffusivity (D), thermal conductivity (K) and temperature coefficient of the optical path length change (ds/dT) in sillenite crystals. These aspects, for what we know, not was studied in details up to now using the lens spectrometry technique and are very important against of the promising potentiality of applications these crystals in non linear optics, real time holography and optical processing data.
Resumo:
A literature survey and a theoretical study were performed to characterize residential chimney conditions for flue gas flow measurements. The focus is on Pitot-static probes to give sufficient basis for the development and calibration of a velocity pressure averaging probe suitable for the continuous dynamic (i.e. non steady state) measurement of the low flow velocities present in residential chimneys. The flow conditions do not meet the requirements set in ISO 10780 and ISO 3966 for Pitot-static probe measurements, and the methods and their uncertainties are not valid. The flow velocities in residential chimneys from a heating boiler under normal operating condi-tions are shown to be so low that they in some conditions result in voiding the assumptions of non-viscous fluid justifying the use of the quadratic Bernoulli equation. A non-linear Reynolds number dependent calibration coefficient that is correcting for the viscous effects is needed to avoid significant measurement errors. The wide range of flow velocity during normal boiler operation also results in the flow type changing from laminar, across the laminar to turbulent transition region, to fully turbulent flow, resulting in significant changes of the velocity profile during dynamic measurements. In addition, the short duct lengths (and changes of flow direction and duct shape) used in practice are shown to result in that the measurements are done in the hydrodynamic entrance region where the flow velocity profiles most likely are neither symmetrical nor fully developed. A measurement method insensitive to velocity profile changes is thus needed, if the flow velocity profile cannot otherwise be determined or predicted with reasonable accuracy for the whole measurement range. Because of particulate matter and condensing fluids in the flue gas it is beneficial if the probe can be constructed so that it can easily be taken out for cleaning, and equipped with a locking mechanism to always ensure the same alignment in the duct without affecting the calibration. The literature implies that there may be a significant time lag in the measurements of low flow rates due to viscous effects in the internal impact pressure passages of Pitot probes, and the significance in the discussed application should be studied experimentally. The measured differential pressures from Pitot-static probes in residential chimney flows are so low that the calibration and given uncertainties of commercially available pressure transducers are not adequate. The pressure transducers should be calibrated specifically for the application, preferably in combination with the probe, and the significance of all different error sources should be investigated carefully. Care should be taken also with the temperature measurement, e.g. with averaging of several sensors, as significant temperature gradients may be present in flue gas ducts.
Resumo:
The accurate identification of the nitrogen content in plants is extremely important since it involves economic aspects and environmental impacts, Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification in plants involves a lot of non-linear parameters and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought SPAD index using artificial neural networks (ANN). The network acts as identifier of relationships among, crop varieties, fertilizer treatments, type of leaf and nitrogen content in the plants (target). So, nitrogen content can be generalized and estimated and from an input parameter set. This approach can form the basis for development of an accurate real time system to predict nitrogen content in plants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)