980 resultados para linear energy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the partitioning of the interaction-induced static electronic dipole (hyper)polarizabilities for linear hydrogen cyanide complexes into contributions arising from various interaction energy terms. We analyzed the nonadditivities of the studied properties and used these data to predict the electric properties of an infinite chain. The interaction-induced static electric dipole properties and their nonadditivities were analyzed using an approach based on numerical differentiation of the interaction energy components estimated in an external electric field. These were obtained using the hybrid variational-perturbational interaction energy decomposition scheme, augmented with coupled-cluster calculations, with singles, doubles, and noniterative triples. Our results indicate that the interaction-induced dipole moments and polarizabilities are primarily electrostatic in nature; however, the composition of the interaction hyperpolarizabilities is much more complex. The overlap effects substantially quench the contributions due to electrostatic interactions, and therefore, the major components are due to the induction and exchange induction terms, as well as the intramolecular electron-correlation corrections. A particularly intriguing observation is that the interaction first hyperpolarizability in the studied systems not only is much larger than the corresponding sum of monomer properties, but also has the opposite sign. We show that this effect can be viewed as a direct consequence of hydrogen-bonding interactions that lead to a decrease of the hyperpolarizability of the proton acceptor and an increase of the hyperpolarizability of the proton donor. In the case of the first hyperpolarizability, we also observed the largest nonadditivity of interaction properties (nearly 17%) which further enhances the effects of pairwise interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maize gluten feed (MGF) is a co-product of wet milling of maize, and is composed of structures that remain after most starch, gluten and germ has been extracted from the grain. Although currently used in dog foods, its digestibility and energy values have not been documented. Two techniques were used to determine nutrient digestibility of MGF for dog foods. Both techniques used extruded diets fed to Beagle dogs, with six replicates per diet. The first study used a difference method in which 300 g/kg of a reference diet was replaced by MGF. Based on the difference method, the coefficient of total tract apparent digestibility (CTTAD) of MGF was 0.53 for dry matter (DM), 0.69 for crude protein (CP), 0.74 for fat, 0.99 for starch, and 0.55 for gross energy (GE). The calculated metabolizable energy (ME) of MGF was 7.99 MJ/kg (as-fed). The second study used a regression method and included a basal diet and a basal diet with 70, 140 and 210 g MGF/kg of diet (as a substitute for maize starch). Maize gluten feed inclusion resulted in a linear reduction of CTTAD of DM (R(2)=0.99; P<0.001), CP (R(2)=0.95; P=0.002), fat (R(2)=0.87; P=0.009). starch (R(2)=0.81; P<0.001), and GE (R(2)=0.99; P<0.001). Faecal production increased linearly from 56 g to 107 g/dog/d (R(2)=0.99; P<0.001), with a linear reduction of faecal DM (R(2)=0.99: P<0.001) and a linear increase in faecal lactic acid concentration (P<0.02). Both urine (R(2)=0.77; P=0.029) and faeces (R(2)=0.92: P=0.019) showed a linear reduction in pH. Results of ingredient MAD obtained by the regression and difference methods were close (6% or less of variation) for CP, fat, and starch, and also for ME content (1.4% higher for the difference method), but the two methods disagreed on calculated CTTAD of DM and organic matter. The high dietary fiber content of MGF (382 g/kg) may explain the low digestibility of this ingredient. Maize gluten feed could be a useful ingredient for formulations designed to have low energy or reduce the urine pH of dogs. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foi estudada a transferência de calor transiente na agitação linear e intermitente (ALI) de embalagens metálicas contendo simulantes de alimentos, objetivando-se sua aplicação em processos de pasteurização ou esterilização e conseqüentes tratamentos térmicos mais eficientes, homogêneos e com produto de melhor qualidade. Foram utilizados quatro meios fluidos simulantes de alimentos de diferentes viscosidades e massas específicas: três óleos e água. Foram combinados efeitos de cinco tratamentos, sendo: meio simulante (4 níveis), espaço livre (3 níveis), freqüência de agitação (4 níveis), amplitude de agitação (2 níveis) e posição das latas (4 níveis). Os ensaios de aquecimento e resfriamento foram feitos em tanque com água à temperatura de 98 °C e 17-20 °C, respectivamente. Com os dados de penetração de calor em cada experimento, foram calculados os parâmetros de penetração de calor fh, jh, fc e jc. Os resultados foram modelados utilizando-se grupos de números adimensionais e expressos em termos de Nusselt, Prandtl, Reynolds e funções trigonométricas (com medidas de amplitude e freqüência de agitação, espaço livre e dimensões da embalagem). Foram estabelecidas as duas Equações gerais para as fases de aquecimento e resfriamento: Nu = ReA 0,199.Pr 0,288.sen(xa/AM)0,406.cos(xf/FA) 1,039.cos((xf/FA).(EL/H).p) 4,556 Aquecimento Nu = 0,1295.ReA 0,047.Pr 0,193.sen(xa/AM)0,114.cos(xf/FA) 0,641.cos((xf/FA).(EL/H).p) 2,476 Resfriamento O processo de ALI pode ser aplicado em pasteurizadores ou autoclaves estáticas horizontais e verticais, com modificações simples. Concluiu-se que a ALI aumenta significativamente a taxa de transferência de calor, tanto no aquecimento como no resfriamento.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we obtain the cosmological solutions and investigate the thermodynamics of matter creation in two diferent contexts. In the first we propose a cosmological model with a time varying speed of light c. We consider two diferent time dependence of c for a at Friedmann-Robertson- Walker (FRW) universe. We write the energy conservation law arising from Einstein equations and study how particles are created as c decreases with cosmic epoch. The variation of c is coupled to a cosmological Λ term and both singular and non-singular solutions are possible. We calculate the "adiabatic" particle creation rate and the total number of particles as a function of time and find the constrains imposed by the second law of thermodynamics upon the models. In the second scenario, we study the nonlinearity of the electrodynamics as a source of matter creation in the cosmological models with at FRW geometry. We write the energy conservation law arising from Einstein field equations with cosmological term Λ, solve the field equations and study how particles are created as the magnetic field B changes with cosmic epoch. We obtain solutions for the adiabatic particle creation rate, the total number of particles and the scale factor as a function of time in three cases: Λ = 0, Λ = constant and Λ α H2 (cosmological term proportional to the Hubble parameter). In all cases, the second law of thermodynamics demands that the universe is not contracting (H ≥ 0). The first two solutions are non-singular and exhibit in ationary periods. The third case studied allows an always in ationary universe for a suficiently large cosmological term

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a factor referred to as k(f) for linear induction motor end effect analysis is presented. The mathematical model takes into account the longitudinal entry end effect. The entry end effect produces considerable distortion in magnetic field distribution. It is shown how this influence is derived from the machine-developed force that is calculated through the application of the I-D theory. The k(f) factor establishes the relationship between the longitudinal end effect and machine parameters, mainly the number of magnetic poles, secondary resistivity, and frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of a fermion subject to a general mixing of vector and scalar potentials in a two-dimensional world is mapped into a Sturm-Liouville problem. Isolated bounded solutions are also searched. For the specific case of an inversely linear potential, which gives rise to an effective Kratzer potential in the Sturm-Liouville problem, exact bounded solutions are found in closed form. The case of a pure scalar potential with their isolated zero-energy solutions, already analyzed in a previous work, is obtained as a particular case. The behavior of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of algorithms for active vibration control in smart structures is an area of interest, mainly due to the demand for better performance of mechanical systems, such as aircraft and aerospace structures. Smart structures, formed using actuators and sensors, can improve the dynamic performance with the application of several kinds of controllers. This article describes the application of a technique based on linear matrix inequalities (LMI) to design an active control system. The positioning of the actuators, the design of a robust state feedback controller and the design of an observer are all achieved using LMI. The following are considered in the controller design: limited actuator input, bounded output (energy) and robustness to parametric uncertainties. Active vibration control of a flat plate is chosen as an application example. The model is identified using experimental data by an eigensystem realization algorithm (ERA) and the placement of the two piezoelectric actuators and single sensor is determined using a finite element model (FEM) and an optimization procedure. A robust controller for active damping is designed using an LMI framework, and a reduced model with observation and control spillover effects is implemented using a computer. The simulation results demonstrate the efficacy of the approach, and show that the control system increases the damping in some of the modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the feasibility of using an energy harvesting device tuned such that its natural frequency coincides with higher harmonics of the input to capture energy from walking or running human motion more efficiently. The paper starts by reviewing the concept of a linear resonant generator for a tonal frequency input and then derives an expression for the power harvested for an input with several harmonics. The amount of power harvested is estimated numerically using measured data from human subjects. Assuming that the input is periodic, the signal is reconstructed using a Fourier series before being used in the simulation. It is found that although the power output depends on the input frequency, the choice of tuning the natural frequency of the device to coincide with a particular higher harmonic is restricted by the amount of damping that is needed to maximize the amount of power harvested, as well as to comply with the size limit of the device. It is also found that it is not feasible to tune the device to match the first few harmonics when the size of the device is small, because a large amount of damping is required to limit the motion of the mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a mathematical model to aid variety selection and planting quantity of sugarcane in order to reduce crop residues, maximize energy generated by this residue, and satisfy all the supply of the mill. We propose Linear Programming with two objective. The conflict between these objectives allows the use of the Nonzero-sum Game Theory. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we constructed an energy-dependent point interaction (EDPI) in its most general form in one-dimensional quantum mechanics. In this paper, we show that stationary solutions of the Schrodinger equation with the EDPI form a complete set. Then any nonstationary solution of the time-dependent Schrodinger equation can be expressed as a linear combination of stationary solutions. This, however, does not necessarily mean that the EDPI is self-adjoint and the time-development of the nonstationary state is unitary. The EDPI is self-adjoint provided that the stationary solutions are all orthogonal to one another. We illustrate situations in which this orthogonality condition is not satisfied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooper pairing is studied in three dimensions to determine its binding energy for all coupling using a general separable interfermion interaction. Also considered are Cooper pairs (CPs) with nonzero center-of-mass momentum (CMM). A coupling-independent linear term in the CMM dominates the pair excitation energy in weak coupling and/or high fermion density, while the more familiar quadratic term prevails only in the extreme low-density (i.e., vacuum) limit for any nonzero coupling. The linear-to-quadratic crossover of the CP dispersion relation is analyzed numerically, and is expected to play a central role in a model of superconductivity (and superfluidity) simultaneously accommodating a Bardeen-Cooper-Schrieffer condensate as well as a Bose-Einstein condensate of CP bosons. (C) 2001 Elsevier B.V. B,V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models with interacting dark energy can alleviate the cosmic coincidence problem by allowing dark matter and dark energy to evolve in a similar fashion. At a fundamental level, these models are specified by choosing a functional form for the scalar potential and for the interaction term. However, in order to compare to observational data it is usually more convenient to use parametrizations of the dark energy equation of state and the evolution of the dark matter energy density. Once the relevant parameters are fitted, it is important to obtain the shape of the fundamental functions. In this paper I show how to reconstruct the scalar potential and the scalar interaction with dark matter from general parametrizations. I give a few examples and show that it is possible for the effective equation of state for the scalar field to cross the phantom barrier when interactions are allowed. I analyze the uncertainties in the reconstructed potential arising from foreseen errors in the estimation of fit parameters and point out that a Yukawa-like linear interaction results from a simple parametrization of the coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possibility of setting constraints on the Couplings of a scalar (pseudoscalar) Higgs boson to the tau lepton and the b quark in the reactions e(+)e(-)-->v (v) over bar tau(+)tau(-) and e(+)e(-)-->v (v) over barb (b) over bar at a future linear electron-positron collider of total energy roots = 500 GeV is studied. The admixture of a new hypothetical pseudoscalar state of the Higgs boson in the Hf (f) over bar vertex is parametrized in the form (mf/v)(a+igamma(5)b). on the basis of an analysis of differential distributions for the processes under study, it is shown that data from the future linear collider TESLA will make it possible to constrain the parameters a and b as -0.32 less than or equal to Deltaa less than or equal to 0.24 and -0.73 less than or equal to b less than or equal to 0.73 in the case of the reaction e(+)e(-)-->v (v) over bar tau(+)tau(-) and as -0.026 less than or equal to Deltaa less than or equal to 0.027 and -0.23 less than or equal to b less than or equal to 0.23 in the case of the reaction e(+)e(-) --> v (v) over barb (b) over bar. It is emphasized that the contribution of the fusion Subprocess WW --> H in the channel involving an electron neutrino is of particular importance, since this contribution enhances the sensitivity of data to the parameters being analyzed. (C) 2004 MAIK Nauka/Inierperiodica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study non-linear structure formation in the presence of dark energy. The influence of dark energy on the growth of large-scale cosmological structures is exerted both through its background effect on the expansion rate, and through its perturbations. In order to compute the rate of formation of massive objects we employ the spherical collapse formalism, which we generalize to include fluids with pressure. We show that the resulting non-linear evolution equations are identical to the ones obtained in the pseudo-Newtonian approach to cosmological perturbations, in the regime where an equation of state serves to describe both the background pressure relative to density, and the pressure perturbations relative to the density perturbations. We then consider a wide range of constant and time-dependent equations of state (including phantom models) parametrized in a standard way, and study their impact on the non-linear growth of structure. The main effect is the formation of dark energy structure associated with the dark matter halo: non-phantom equations of state induce the formation of a dark energy halo, damping the growth of structures; phantom models, on the other hand, generate dark energy voids, enhancing structure growth. Finally, we employ the Press-Schechter formalism to compute how dark energy affects the number of massive objects as a function of redshift (number counts).