970 resultados para ligand binding
Resumo:
W5.43(194), a conserved tryptophan residue among G-protein coupled receptors (GPCRs) and cannabinoid receptors (CB), was examined in the present report for its significance in CB2 receptor ligand binding and adenylyl cyclase (AC) activity. Computer modeling postulates that this site in CB2 may be involved in the affinity of WIN55212-2 and SR144528 through aromatic contacts. In the present study, we reported that a CB2 receptor mutant, W5.43(194)Y, which had a tyrosine (Y) substitution for tryptophan (W), retained the binding affinity for CB agonist CP55940, but reduced binding affinity for CB2 agonist WIN55212-2 and inverse agonist SR144528 by 8-fold and 5-fold, respectively; the CB2 W5.43(194)F and W5.43(194)A mutations significantly affect the binding activities of CP55940, WIN55212-2 and SR144528. Furthermore, we found that agonist-mediated inhibition of the forskolin-induced cAMP production was dramatically diminished in the CB2 mutant W5.43(194)Y, whereas W5.43(194)F and W5.43(194)A mutants resulted in complete elimination of downstream signaling, suggesting that W5.43(194) was essential for the full activation of CB2. These results indicate that both aromatic interaction and hydrogen bonding are involved in ligand binding for the residue W5.43(194), and the mutations of this tryptophan site may affect the conformation of the ligand binding pocket and therefore control the active conformation of the wild type CB2 receptor. W5.43(194)Y/F/A mutations also displayed noticeable enhancement of the constitutive activation probably attributed to the receptor conformational changes resulted from the mutations.
Resumo:
Ligands of the benzodiazepine binding site of the GABA(A) receptor come in three flavors: positive allosteric modulators, negative allosteric modulators and antagonists all of which can bind with high affinity. The GABA(A) receptor is a pentameric protein which forms a chloride selective ion channel and ligands of the benzodiazepine binding site stabilize three different conformations of this protein. Classical benzodiazepines exert a positive allosteric effect by increasing the apparent affinity of channel opening by the agonist γ-aminobutyric acid (GABA). We concentrate here on the major adult isoform, the α(1)β(2)γ(2) GABA(A) receptor. The classical binding pocket for benzodiazepines is located in a subunit cleft between α(1) and γ(2) subunits in a position homologous to the agonist binding site for GABA that is located between β(2) and α(1) subunits. We review here approaches to this picture. In particular, point mutations were performed in combination with subsequent analysis of the expressed mutant proteins using either electrophysiological techniques or radioactive ligand binding assays. The predictive power of these methods is assessed by comparing the results with the predictions that can be made on the basis of the recently published crystal structure of the acetylcholine binding protein that shows homology to the N-terminal, extracellular domain of the GABA(A) receptor. In addition, we review an approach to the question of how the benzodiazepine ligands are positioned in their binding pocket. We also discuss a newly postulated modulatory site for benzodiazepines at the α(1)/β(2) subunit interface, homologous to the classical benzodiazepine binding pocket.
Resumo:
Classical benzodiazepines, such as diazepam, interact with α(x)β(2)γ(2) GABA(A) receptors, x = 1, 2, 3, 5 and modulate their function. Modulation of different receptor isoforms probably results in selective behavioural effects as sedation and anxiolysis. Knowledge of differences in the structure of the binding pocket in different receptor isoforms is of interest for the generation of isoform-specific ligands. We studied here the interaction of the covalently reacting diazepam analogue 3-NCS with α(1)S204Cβ(2)γ(2), α(1)S205Cβ(2)γ(2) and α(1)T206Cβ(2)γ(2) and with receptors containing the homologous mutations in α(2)β(2)γ(2), α(3)β(2)γ(2), α(5)β(1/2)γ(2) and α(6)β(2)γ(2). The interaction was studied using radioactive ligand binding and at the functional level using electrophysiological techniques. Both strategies gave overlapping results. Our data allow conclusions about the relative apposition of α(1)S204Cβ(2)γ(2), α(1)S205Cβ(2)γ(2) and α(1)T206Cβ(2)γ(2) and homologous positions in α(2), α(3), α(5) and α(6) with C-atom adjacent to the keto-group in diazepam. Together with similar data on the C-atom carrying Cl in diazepam, they indicate that the architecture of the binding site for benzodiazepines differs in each GABA(A) receptor isoform α(1)β(2)γ(2), α(2)β(2)γ(2), α(3)β(2)γ(2), α(5)β(1/2)γ(2) and α(6)β(2)γ(2).
Resumo:
Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) have been identified as ligands with different effector functions of the vascular assembly and maturation-mediating receptor tyrosine kinase Tie-2. To understand the molecular interactions of the angiopoietins with their receptor, we have studied the binding of Ang-1 and Ang-2 to the Tie-2 receptor. Enzyme-linked immunosorbent assay-based competition assays and co-immunoprecipitation experiments analyzing the binding of Ang-1 and Ang-2 to truncation mutants of the extracellular domain of Tie-2 showed that the first Ig-like loop of Tie-2 in combination with the epidermal growth factor (EGF)-like repeats (amino acids 1-360) is required for angiopoietin binding. The first Ig-like domain or the EGF-like repeats alone are not capable of binding Ang-1 and Ang-2. Concomitantly, we made the surprising finding that Tie-2 exon-2 knockout mice do express a mutated Tie-2 protein that lacks 104 amino acids of the first Ig-like domain. This mutant Tie-2 receptor is functionally inactive as shown by the lack of ligand binding and receptor phosphorylation. Collectively, the data show that the first 104 amino acids of the Tie-2 receptor are essential but not sufficient for angiopoietin binding. Conversely, the first 360 amino acids (Ig-like domain plus EGF-like repeats) of the Tie-2 receptor are necessary and sufficient to bind both Ang-1 and Ang-2, which suggests that differential receptor binding is not likely to be responsible for the different functions of Ang-1 and Ang-2.
Resumo:
Classical benzodiazepines, for example diazepam, interact with alpha(x)beta(2)gamma(2) GABA(A) receptors, x = 1, 2, 3, 5. Little is known about effects of alpha subunits on the structure of the binding pocket. We studied here the interaction of the covalently reacting diazepam analog 7-Isothiocyanato-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one (NCS compound) with alpha(1)H101Cbeta(2)gamma(2) and with receptors containing the homologous mutation, alpha(2)H101Cbeta(2)gamma(2), alpha(3)H126Cbeta(2)gamma(2) and alpha(5)H105Cbeta(2)gamma(2). This comparison was extended to alpha(6)R100Cbeta(2)gamma(2) receptors as this mutation conveys to these receptors high affinity towards classical benzodiazepines. The interaction was studied at the ligand binding level and at the functional level using electrophysiological techniques. Results indicate that the geometry of alpha(6)R100Cbeta(2)gamma(2) enables best interaction with NCS compound, followed by alpha(3)H126Cbeta(2)gamma(2), alpha(1)H101Cbeta(2)gamma(2) and alpha(2)H101Cbeta(2)gamma(2), while alpha(5)H105Cbeta(2)gamma(2) receptors show little interaction. Our results allow conclusions about the relative apposition of alpha(1)H101 and homologous positions in alpha(2), alpha(3), alpha(5) and alpha(6) with the position occupied by -Cl in diazepam. During this study we found evidence for the presence of a novel site for benzodiazepines that prevents modulation of GABA(A) receptors via the classical benzodiazepine site. The novel site potentially contributes to the high degree of safety to some of these drugs. Our results indicate that this site may be located at the alpha/beta subunit interface pseudo-symmetrically to the site for classical benzodiazepines located at the alpha/gamma interface.
Resumo:
Cellular retinaldehyde-binding protein (CRALBP) is essential for mammalian vision by routing 11-cis-retinoids for the conversion of photobleached opsin molecules into photosensitive visual pigments. The arginine-to-tryptophan missense mutation in position 234 (R234W) in the human gene RLBP1 encoding CRALBP compromises visual pigment regeneration and is associated with Bothnia dystrophy. Here we report the crystal structures of both wild-type human CRALBP and of its mutant R234W as binary complexes complemented with the endogenous ligand 11-cis-retinal, at 3.0 and 1.7 A resolution, respectively. Our structural model of wild-type CRALBP locates R234 to a positively charged cleft at a distance of 15 A from the hydrophobic core sequestering 11-cis-retinal. The R234W structural model reveals burial of W234 and loss of dianion-binding interactions within the cleft with physiological implications for membrane docking. The burial of W234 is accompanied by a cascade of side-chain flips that effect the intrusion of the side-chain of I238 into the ligand-binding cavity. As consequence of the intrusion, R234W displays 5-fold increased resistance to light-induced photoisomerization relative to wild-type CRALBP, indicating tighter binding to 11-cis-retinal. Overall, our results reveal an unanticipated domino-like structural transition causing Bothnia-type retinal dystrophy by the impaired release of 11-cis-retinal from R234W.
Resumo:
Peptide transporters (PTRs) of the large PTR family facilitate the uptake of di- and tripeptides to provide cells with amino acids for protein synthesis and for metabolic intermediates. Although several PTRs have been structurally and functionally characterized, how drugs modulate peptide transport remains unclear. To obtain insight into this mechanism, we characterize inhibitor binding to the Escherichia coli PTR dipeptide and tripeptide permease A (DtpA), which shows substrate specificities similar to its human homolog hPEPT1. After demonstrating that Lys[Z-NO2]-Val, the strongest inhibitor of hPEPT1, also acts as a high-affinity inhibitor for DtpA, we used single-molecule force spectroscopy to localize the structural segments stabilizing the peptide transporter and investigated which of these structural segments change stability upon inhibitor binding. This characterization was done with DtpA embedded in the lipid membrane and exposed to physiologically relevant conditions. In the unbound state, DtpA adopts two main alternate conformations in which transmembrane α-helix (TMH) 2 is either stabilized (in ∼43% of DtpA molecules) or not (in ∼57% of DtpA molecules). The two conformations are understood to represent the inward- and outward-facing conformational states of the transporter. With increasing inhibitor concentration, the conformation characterized by a stabilized TMH 2 becomes increasingly prevalent, reaching ∼92% at saturation. Our measurements further suggest that Lys[Z-NO2]-Val interacts with discrete residues in TMH 2 that are important for ligand binding and substrate affinity. These interactions in turn stabilize TMH 2, thereby promoting the inhibited conformation of DtpA.
Resumo:
We present the crystal structures of the SEC14-like domain of supernatant protein factor (SPF) in complex with squalene and 2,3-oxidosqualene. The structures were resolved at 1.75 Å (complex with squalene) and 1.6 Å resolution (complex with 2,3-oxidosqualene), leading in both cases to clear images of the protein/ substrate interactions. Ligand binding is facilitated by removal of the Golgi-dynamics (GOLD) C-terminal domain of SPF, which, as shown in previous structures of the apo-protein, blocked the opening of the binding pocket to the exterior. Both substrates bind into a large hydrophobic cavity, typical of such lipid-transporter family. Our structures report no specific recognition mode for the epoxide group. In fact, for both molecules, ligand affinity is dominated by hydrophobic interactions, and independent investigations by computational models or differential scanning micro-calorimetry reveal similar binding affinities for both ligands. Our findings elucidate the molecular bases of the role of SPF in sterol endo-synthesis, supporting the original hypothesis that SPF is a facilitator of substrate flow within the sterol synthetic pathway. Moreover, our results suggest that the GOLD domain acts as a regulator, as its conformational displacement must occur to favor ligand binding and release during the different synthetic steps.
Resumo:
GABAA receptors are the major inhibitory neurotransmitter receptors in the brain and are the target for many clinically important drugs such as the benzodiazepines. Benzodiazepines act at the high-affinity binding site at the α+/γ- subunit interface. Previously, an additional low affinity binding site for diazepam located in the transmembrane (TM) domain has been described. The compound SJM-3 was recently identified in a prospective screening of ligands for the benzodiazepine binding site and investigated for its site of action. We determined the binding properties of SJM-3 at GABAA receptors recombinantly expressed in HEK-cells using radioactive ligand binding assays. Impact on function was assessed in Xenopus laevis oocytes with electrophysiological experiments using the two-electrode voltage clamp method. SJM-3 was shown to act as an antagonist at the α+/γ- site. At the same time it strongly potentiated GABA currents via the binding site for diazepam in the transmembrane domain. Mutation of a residue in M2 of the α subunit strongly reduced receptor modulation by SJM-3 and a homologous mutation in the β subunit abolished potentiation. SJM-3 acts as a more efficient modulator than diazepam at the site in the trans-membrane domain. In contrast to low concentrations of benzodiazepines, SJM-3 modulates both synaptic and extrasynaptic receptors. A detailed exploration of the membrane site may provide the basis for the design and identification of subtype-selective modulatory drugs.
Resumo:
The social amoeba, Dictyostelium discoideum, undergoes a remarkable starvation-induced program of development that transforms a population of unicellular amoebae into a fruiting body composed of resistant spores suspended on a stalk. During this development, secreted cAMP drives chemotaxis of the amoebae, leading to their aggregation, and subsequent differentiation and morphogenesis. Four sequentially expressed G protein-coupled receptors (GPCRs) for cAMP play critical roles in this process. The first of these, cAR1, is essential for aggregation as it mediates chemotaxis as well as the propagation of secreted cAMP waves throughout aggregating populations. Ligand-induced internalization has been shown to regulate a variety of GPCRs. However, little was known at the outset of this study about the role of internalization in the regulation of cAR1 function or, for that matter, in developmental systems in general. For this study, cAMP-induced cAR1 internalization was assessed by measuring (1) the reduction of cell surface binding sites for [ 3H]cAMP and (2) the redistribution of YFP-tagged receptors to the cell's interior, cAMP was found to induce little or no loss of ligand binding (LLB) in vegetative cells. However, the ability to induce LLB increased progressively over the initial 6 hrs of development, reaching ∼70% in cells undergoing aggregation. Despite these reductions in surface binding, detectable cAR1-YFP redistribution could be induced by cAMP only after the cells reached the mound stage (10 hrs) and was found to occur naturally by the ensuing slug stage (18 hrs). Site-directed substitution of a cluster of 5 serines in the receptor's cytoplasmic tail that was previously shown to be the principal site of cAMP-induced cAR1 phosphorylation impaired both LLB and receptor redistribution and furthermore resulted in mound-stage developmental arrest, suggesting that phosphorylation of cAR1 is a prerequisite for its internalization and that cAR1 internalization is required for post-aggregative development. To assess the involvement of clathrin mediated endocytosis, Dictyostelium cells lacking the clathrin light chain gene (clc-) or either of two dynamin genes were examined and found to be defective in LLB and, in the case of clc- cells, also cAR1 redistribution and turnover. Furthermore, cAR1 overexpression in clc- cells (like the serine mutant in wild-type cells) promoted developmental arrest in mounds. The mound-arrest phenotype was also recapitulated in a wild-type background by the specific expression of cAR1 in prestalk cells (but not prespore cells), suggesting that development depends critically on internalization and clearance of cAR1 from these cells. Persistent cAR1 expression following aggregation was found to be associated with aberrant expression of prestalk and prespore genes, which may adversely affect development in the prestalk cell lineage. The PI3 kinase-TORC2 signal transduction pathway, known to be important for Dictyostelium chemotaxis and internalization of yeast pheromone receptors, was examined using chemical inhibitors and null cells and found to be necessary for cAR1 internalization. In conclusion, cAR1 was shown to be similar to other GPCRs in that its internalization depends on phosphorylation of cytoplasmic domain serines, utilizes clathrin and dynamin, and involves the TORC2 complex. In addition, the findings presented here that cAR1 internalization is both developmentally regulated and required for normal development represent a novel regulatory paradigm that might pertain to other GPCRs known to play important roles in the development of humans and other metazoans. ^
Resumo:
Adipose differentiation is an important part of the energy homeostasis system of higher organisms. Recent data have suggested that this process is controlled by an interplay of transcription factors including PPARγ, the C/EBPs, and ADD1/SREBP1. Although these factors interact functionally to initiate the program of differentiation, there are no data concerning specific mechanisms of interaction. We show here that the expression of ADD1/SREBP1 specifically increases the activity of PPARγ but not other isoforms, PPARα, or PPARδ. This activation occurs through the ligand-binding domain of PPARγ when it is fused to the DNA-binding domain of Gal4. The stimulation of PPARγ by ADD1/SREBP1 does not require coexpression in the same cells; supernatants from cultures that express ADD1/SREBP1 augment the transcriptional activity of PPARγ. Finally, we demonstrate directly that cells expressing ADD1/SREBP1 produce and secrete lipid molecule(s) that bind directly to PPARγ, displacing the binding of radioactive thiazolidinedione ligands. These data establish that ADD1/SREBP1 can control the production of endogenous ligand(s) for PPARγ and suggest a mechanism for coordinating the actions of these adipogenic factors.
Resumo:
Antibody single-chain Fv fragment (scFv) molecules that are specific for fluorescein have been engineered with a C-terminal cysteine for a directed immobilization on a flat gold surface. Individual scFv molecules can be identified by atomic force microscopy. For selected molecules the antigen binding forces are then determined by using a tip modified with covalently immobilized antigen. An scFv mutant of 12% lower free energy for ligand binding exhibits a statistically significant 20% lower binding force. This strategy of covalent immobilization and measuring well separated single molecules allows the characterization of ligand binding forces in molecular repertoires at the single molecule level and will provide a deeper insight into biorecognition processes.
Resumo:
We have cloned a cDNA and gene from the tobacco hornworm, Manduca sexta, which is related to the vertebrate cellular retinoic acid binding proteins (CRABPs). CRABPs are members of the superfamily of lipid binding proteins (LBPs) and are thought to mediate the effects of retinoic acid (RA) on morphogenesis, differentiation, and homeostasis. This discovery of a Manduca sexta CRABP (msCRABP) demonstrates the presence of a CRABP in invertebrates. Compared with bovine/murine CRABP I, the deduced amino acid sequence of msCRABP is 71% homologous overall and 88% homologous for the ligand binding pocket. The genomic organization of msCRABP is conserved with other CRABP family members and the larger LBP superfamily. Importantly, the promoter region contains a motif that resembles an RA response element characteristic of the promoter region of most CRABPs analyzed. Three-dimensional molecular modeling based on postulated structural homology with bovine/murine CRABP I shows msCRABP has a ligand binding pocket that can accommodate RA. The existence of an invertebrate CRABP has significant evolutionary implications, suggesting CRABPs appeared during the evolution of the LBP superfamily well before vertebrate/invertebrate divergence, instead of much later in evolution in selected vertebrates.
Resumo:
Triabin, a 142-residue protein from the saliva of the blood-sucking triatomine bug Triatoma pallidipennis, is a potent and selective thrombin inhibitor. Its stoichiometric complex with bovine α-thrombin was crystallized, and its crystal structure was solved by Patterson search methods and refined at 2.6-Å resolution to an R value of 0.184. The analysis revealed that triabin is a compact one-domain molecule essentially consisting of an eight-stranded β-barrel. The eight strands A to H are arranged in the order A-C-B-D-E-F-G-H, with the first four strands exhibiting a hitherto unobserved up-up-down-down topology. Except for the B-C inversion, the triabin fold exhibits the regular up-and-down topology of lipocalins. In contrast to the typical ligand-binding lipocalins, however, the triabin barrel encloses a hydrophobic core intersected by a unique salt-bridge cluster. Triabin interacts with thrombin exclusively via its fibrinogen-recognition exosite. Surprisingly, most of the interface interactions are hydrophobic. A prominent exception represents thrombin’s Arg-77A side chain, which extends into a hydrophobic triabin pocket forming partially buried salt bridges with Glu-128 and Asp-135 of the inhibitor. The fully accessible active site of thrombin in this complex is in agreement with its retained hydrolytic activity toward small chromogenic substrates. Impairment of thrombin’s fibrinogen converting activity or of its thrombomodulin-mediated protein C activation capacity upon triabin binding is explained by usage of overlapping interaction sites of fibrinogen, thrombomodulin, and triabin on thrombin. These data demonstrate that triabin inhibits thrombin via a novel and unique mechanism that might be of interest in the context of potential therapeutic applications.
Resumo:
Genetic evidence has implicated three proteins, the β-amyloid precursor protein (β-APP) and the two homologous presenilins (PS-1 and PS-2), in the etiology of Alzheimer’s disease (AD). How these three proteins jointly contribute to AD, however, is not clear. Nor is any of their normal physiological functions known. Herein, we demonstrate, confirming a prediction made earlier, that β-APP and either PS-1 or PS-2 act as a specific membrane-bound ligand binding intercellularly with either of its two membrane receptors. This results in a cell–cell adhesion, after which rapid transient increases in protein tyrosine kinase activity and protein tyrosine phosphorylation occur coordinately inside one or both of the two adherent cells. The spectrum of proteins modified by tyrosine phosphorylation differs depending on whether PS-1 or PS-2 is involved in the specific intercellular binding to β-APP, which implies that PS-1 and PS-2 have distinct, rather than redundant, functions in normal physiology. The relevance of this intercellular interaction and signaling process to AD is discussed.